将非abel有限群分解为两个子集

R. Bildanov, V. Goryachenko, A. Vasil’ev
{"title":"将非abel有限群分解为两个子集","authors":"R. Bildanov, V. Goryachenko, A. Vasil’ev","doi":"10.33048/semi.2020.17.046","DOIUrl":null,"url":null,"abstract":"A group $G$ is said to be factorized into subsets $A_1, A_2, \\ldots, A_s\\subseteq G$ if every element $g$ in $G$ can be uniquely represented as $g=g_1g_2\\ldots g_s$, where $g_i\\in A_i$, $i=1,2,\\ldots,s$. We consider the following conjecture: for every finite group $G$ and every factorization $n=ab$ of its order, there is a factorization $G=AB$ with $|A|=a$ and $|B|=b$. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than $10\\,000$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Factoring nonabelian finite groups into two subsets\",\"authors\":\"R. Bildanov, V. Goryachenko, A. Vasil’ev\",\"doi\":\"10.33048/semi.2020.17.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group $G$ is said to be factorized into subsets $A_1, A_2, \\\\ldots, A_s\\\\subseteq G$ if every element $g$ in $G$ can be uniquely represented as $g=g_1g_2\\\\ldots g_s$, where $g_i\\\\in A_i$, $i=1,2,\\\\ldots,s$. We consider the following conjecture: for every finite group $G$ and every factorization $n=ab$ of its order, there is a factorization $G=AB$ with $|A|=a$ and $|B|=b$. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than $10\\\\,000$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/semi.2020.17.046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2020.17.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如果$G$中的每个元素$G$可以唯一地表示为$G =g_1g_2\ldots g_s$,其中$g_i\在A_i$中,$i=1,2,\ldots,s$,则称群$G$被分解为子集$A_1, A_2, \ldots, A_s $。我们考虑以下猜想:对于每一个有限群$G$和它阶的每一个分解$n=ab$,存在一个分解$G= ab$且$| a |=a$和$|B|= B$。我们证明了这个猜想的最小反例必须是一个非abel简单群,并证明了对于每一个非abel组成因子的数量级小于$10\ 000$的有限群的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factoring nonabelian finite groups into two subsets
A group $G$ is said to be factorized into subsets $A_1, A_2, \ldots, A_s\subseteq G$ if every element $g$ in $G$ can be uniquely represented as $g=g_1g_2\ldots g_s$, where $g_i\in A_i$, $i=1,2,\ldots,s$. We consider the following conjecture: for every finite group $G$ and every factorization $n=ab$ of its order, there is a factorization $G=AB$ with $|A|=a$ and $|B|=b$. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than $10\,000$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信