自反矩阵反问题的最小二乘解

Lianghua Liu
{"title":"自反矩阵反问题的最小二乘解","authors":"Lianghua Liu","doi":"10.1109/ICIST.2011.5765285","DOIUrl":null,"url":null,"abstract":"P = (p<inf>ij</inf>) ∈ C<sup>n×n</sup> is regarded as a generalized reflection matrix if P satisfies that P<sup>H</sup> = P, P<sup>2</sup> = I. Let P ∈ C<sup>n×n</sup> be a given generalized reflection matrix, A matrix A ∈ C<sup>n×n</sup>is regarded as an n × n reflexive matrix with respect to P if A satisfies A = PAP. We denote the set of all n × n reflexive matrices by C<inf>r</inf><sup>n×n</sup>(P). In this paper, the least-square solutions of the inverse problem of reflexive matrices is discussed, and the expression of the solution is obtained. In addition, the problem of using reflexive matrices to construct the optimal approximation to a given matrix is discussed, the necessary and sufficient conditions about the problem are derived, and the expression of the solutions is provided.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"9 1","pages":"438-440"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least-square solutions of inverse problems for reflexive matrices\",\"authors\":\"Lianghua Liu\",\"doi\":\"10.1109/ICIST.2011.5765285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P = (p<inf>ij</inf>) ∈ C<sup>n×n</sup> is regarded as a generalized reflection matrix if P satisfies that P<sup>H</sup> = P, P<sup>2</sup> = I. Let P ∈ C<sup>n×n</sup> be a given generalized reflection matrix, A matrix A ∈ C<sup>n×n</sup>is regarded as an n × n reflexive matrix with respect to P if A satisfies A = PAP. We denote the set of all n × n reflexive matrices by C<inf>r</inf><sup>n×n</sup>(P). In this paper, the least-square solutions of the inverse problem of reflexive matrices is discussed, and the expression of the solution is obtained. In addition, the problem of using reflexive matrices to construct the optimal approximation to a given matrix is discussed, the necessary and sufficient conditions about the problem are derived, and the expression of the solutions is provided.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"9 1\",\"pages\":\"438-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

若P满足PH = P, P2 = i,则将P = (pij)∈Cn×n视为广义反射矩阵,设P∈Cn×n为给定的广义反射矩阵,若a满足a = PAP,则将矩阵a∈Cn×nis视为关于P的n×n自反矩阵。我们用Crn×n(P)表示所有n×n自反矩阵的集合。本文讨论了自反矩阵反问题的最小二乘解,得到了其解的表达式。此外,讨论了用自反矩阵构造给定矩阵的最优逼近问题,导出了该问题的充要条件,并给出了其解的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least-square solutions of inverse problems for reflexive matrices
P = (pij) ∈ Cn×n is regarded as a generalized reflection matrix if P satisfies that PH = P, P2 = I. Let P ∈ Cn×n be a given generalized reflection matrix, A matrix A ∈ Cn×nis regarded as an n × n reflexive matrix with respect to P if A satisfies A = PAP. We denote the set of all n × n reflexive matrices by Crn×n(P). In this paper, the least-square solutions of the inverse problem of reflexive matrices is discussed, and the expression of the solution is obtained. In addition, the problem of using reflexive matrices to construct the optimal approximation to a given matrix is discussed, the necessary and sufficient conditions about the problem are derived, and the expression of the solutions is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信