{"title":"圆形Jacobi β-系综的算子能级极限","authors":"Yun Li, B. Valkó","doi":"10.1142/s2010326322500435","DOIUrl":null,"url":null,"abstract":"We prove an operator level limit for the circular Jacobi β-ensemble. As a result, we characterize the counting function of the limit point process via coupled systems of stochastic differential equations. We also show that the normalized characteristic polynomials converge to a random analytic function, which we characterize via the joint distribution of its Taylor coefficients at zero and as the solution of a stochastic differential equation system. We also provide analogous results for the real orthogonal β-ensemble.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Operator level limit of the circular Jacobi β-ensemble\",\"authors\":\"Yun Li, B. Valkó\",\"doi\":\"10.1142/s2010326322500435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an operator level limit for the circular Jacobi β-ensemble. As a result, we characterize the counting function of the limit point process via coupled systems of stochastic differential equations. We also show that the normalized characteristic polynomials converge to a random analytic function, which we characterize via the joint distribution of its Taylor coefficients at zero and as the solution of a stochastic differential equation system. We also provide analogous results for the real orthogonal β-ensemble.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operator level limit of the circular Jacobi β-ensemble
We prove an operator level limit for the circular Jacobi β-ensemble. As a result, we characterize the counting function of the limit point process via coupled systems of stochastic differential equations. We also show that the normalized characteristic polynomials converge to a random analytic function, which we characterize via the joint distribution of its Taylor coefficients at zero and as the solution of a stochastic differential equation system. We also provide analogous results for the real orthogonal β-ensemble.