Xuelian Lin, Shuai Ma, Jiahao Jiang, Yanchen Hou, Tianyu Wo
{"title":"轨迹压缩的误差边界化简算法:实验评价","authors":"Xuelian Lin, Shuai Ma, Jiahao Jiang, Yanchen Hou, Tianyu Wo","doi":"10.1145/3474373","DOIUrl":null,"url":null,"abstract":"Nowadays, various sensors are collecting, storing, and transmitting tremendous trajectory data, and it is well known that the storage, network bandwidth, and computing resources could be heavily wasted if raw trajectory data is directly adopted. Line simplification algorithms are effective approaches to attacking this issue by compressing a trajectory to a set of continuous line segments, and are commonly used in practice. In this article, we first classify the error bounded line simplification algorithms into different categories and review each category of algorithms. We then study the data aging problem of line simplification algorithms and distance metrics from the views of aging friendliness and aging errors. Finally, we present a systematic experimental evaluation of representative error bounded line simplification algorithms, including both compression optimal and sub-optimal methods, in terms of commonly adopted perpendicular Euclidean, synchronous Euclidean, and direction-aware distances. Using real-life trajectory datasets, we systematically evaluate and analyze the performance (compression ratio, average error, running time, aging friendliness, and query friendliness) of error bounded line simplification algorithms with respect to distance metrics, trajectory sizes, and error bounds. Our study provides a full picture of error bounded line simplification algorithms, which leads to guidelines on how to choose appropriate algorithms and distance metrics for practical applications.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"17 1","pages":"1 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Error Bounded Line Simplification Algorithms for Trajectory Compression: An Experimental Evaluation\",\"authors\":\"Xuelian Lin, Shuai Ma, Jiahao Jiang, Yanchen Hou, Tianyu Wo\",\"doi\":\"10.1145/3474373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, various sensors are collecting, storing, and transmitting tremendous trajectory data, and it is well known that the storage, network bandwidth, and computing resources could be heavily wasted if raw trajectory data is directly adopted. Line simplification algorithms are effective approaches to attacking this issue by compressing a trajectory to a set of continuous line segments, and are commonly used in practice. In this article, we first classify the error bounded line simplification algorithms into different categories and review each category of algorithms. We then study the data aging problem of line simplification algorithms and distance metrics from the views of aging friendliness and aging errors. Finally, we present a systematic experimental evaluation of representative error bounded line simplification algorithms, including both compression optimal and sub-optimal methods, in terms of commonly adopted perpendicular Euclidean, synchronous Euclidean, and direction-aware distances. Using real-life trajectory datasets, we systematically evaluate and analyze the performance (compression ratio, average error, running time, aging friendliness, and query friendliness) of error bounded line simplification algorithms with respect to distance metrics, trajectory sizes, and error bounds. Our study provides a full picture of error bounded line simplification algorithms, which leads to guidelines on how to choose appropriate algorithms and distance metrics for practical applications.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"17 1\",\"pages\":\"1 - 44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error Bounded Line Simplification Algorithms for Trajectory Compression: An Experimental Evaluation
Nowadays, various sensors are collecting, storing, and transmitting tremendous trajectory data, and it is well known that the storage, network bandwidth, and computing resources could be heavily wasted if raw trajectory data is directly adopted. Line simplification algorithms are effective approaches to attacking this issue by compressing a trajectory to a set of continuous line segments, and are commonly used in practice. In this article, we first classify the error bounded line simplification algorithms into different categories and review each category of algorithms. We then study the data aging problem of line simplification algorithms and distance metrics from the views of aging friendliness and aging errors. Finally, we present a systematic experimental evaluation of representative error bounded line simplification algorithms, including both compression optimal and sub-optimal methods, in terms of commonly adopted perpendicular Euclidean, synchronous Euclidean, and direction-aware distances. Using real-life trajectory datasets, we systematically evaluate and analyze the performance (compression ratio, average error, running time, aging friendliness, and query friendliness) of error bounded line simplification algorithms with respect to distance metrics, trajectory sizes, and error bounds. Our study provides a full picture of error bounded line simplification algorithms, which leads to guidelines on how to choose appropriate algorithms and distance metrics for practical applications.