偏好、环境和社区:预测智能手机应用使用模式的多方位方法

Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, N. Lane, Zhenyu Chen, A. Campbell, Tanzeem Choudhury
{"title":"偏好、环境和社区:预测智能手机应用使用模式的多方位方法","authors":"Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, N. Lane, Zhenyu Chen, A. Campbell, Tanzeem Choudhury","doi":"10.1145/2493988.2494333","DOIUrl":null,"url":null,"abstract":"Reliable smartphone app prediction can strongly benefit both users and phone system performance alike. However, real-world smartphone app usage behavior is a complex phenomena driven by a number of competing factors. In this pa- per, we develop an app usage prediction model that leverages three key everyday factors that affect app usage decisions -- (1) intrinsic user app preferences and user historical patterns; (2) user activities and the environment as observed through sensor-based contextual signals; and, (3) the shared aggregate patterns of app behavior that appear in various user communities. While rapid progress has been made recently in smartphone app prediction, existing prediction models tend to focus on only one of these factors. We evaluate a multi-faceted approach to prediction using (1) a 3-week 35-user field trial, along with (2) analysis of app usage logs of 4,606 smartphone users worldwide. We find our app usage model can not only produce more robust app predictions than conventional techniques, but it can also enable significant smartphone system optimizations.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"37 1","pages":"69-76"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Preference, context and communities: a multi-faceted approach to predicting smartphone app usage patterns\",\"authors\":\"Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, N. Lane, Zhenyu Chen, A. Campbell, Tanzeem Choudhury\",\"doi\":\"10.1145/2493988.2494333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable smartphone app prediction can strongly benefit both users and phone system performance alike. However, real-world smartphone app usage behavior is a complex phenomena driven by a number of competing factors. In this pa- per, we develop an app usage prediction model that leverages three key everyday factors that affect app usage decisions -- (1) intrinsic user app preferences and user historical patterns; (2) user activities and the environment as observed through sensor-based contextual signals; and, (3) the shared aggregate patterns of app behavior that appear in various user communities. While rapid progress has been made recently in smartphone app prediction, existing prediction models tend to focus on only one of these factors. We evaluate a multi-faceted approach to prediction using (1) a 3-week 35-user field trial, along with (2) analysis of app usage logs of 4,606 smartphone users worldwide. We find our app usage model can not only produce more robust app predictions than conventional techniques, but it can also enable significant smartphone system optimizations.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"37 1\",\"pages\":\"69-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

可靠的智能手机应用预测对用户和手机系统性能都大有裨益。然而,现实世界的智能手机应用使用行为是一个复杂的现象,受到许多竞争因素的驱动。在本文中,我们开发了一个应用使用预测模型,该模型利用了影响应用使用决策的三个关键日常因素——(1)用户固有的应用偏好和用户历史模式;(2)通过基于传感器的上下文信号观察到的用户活动和环境;(3)出现在不同用户群体中的应用行为的共享聚合模式。虽然最近在智能手机应用预测方面取得了快速进展,但现有的预测模型往往只关注其中一个因素。我们使用(1)为期3周的35名用户现场试验,以及(2)分析全球4,606名智能手机用户的应用程序使用日志来评估多方面的预测方法。我们发现,我们的应用使用模型不仅可以比传统技术产生更可靠的应用预测,而且还可以实现重要的智能手机系统优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preference, context and communities: a multi-faceted approach to predicting smartphone app usage patterns
Reliable smartphone app prediction can strongly benefit both users and phone system performance alike. However, real-world smartphone app usage behavior is a complex phenomena driven by a number of competing factors. In this pa- per, we develop an app usage prediction model that leverages three key everyday factors that affect app usage decisions -- (1) intrinsic user app preferences and user historical patterns; (2) user activities and the environment as observed through sensor-based contextual signals; and, (3) the shared aggregate patterns of app behavior that appear in various user communities. While rapid progress has been made recently in smartphone app prediction, existing prediction models tend to focus on only one of these factors. We evaluate a multi-faceted approach to prediction using (1) a 3-week 35-user field trial, along with (2) analysis of app usage logs of 4,606 smartphone users worldwide. We find our app usage model can not only produce more robust app predictions than conventional techniques, but it can also enable significant smartphone system optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信