图模型中的近似计数,Lovász局部引理和推理

Ankur Moitra
{"title":"图模型中的近似计数,Lovász局部引理和推理","authors":"Ankur Moitra","doi":"10.1145/3268930","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a new approach to approximate counting in bounded degree systems with higher-order constraints. Our main result is an algorithm to approximately count the number of solutions to a CNF formula Φ when the width is logarithmic in the maximum degree. This closes an exponential gap between the known upper and lower bounds. Moreover, our algorithm extends straightforwardly to approximate sampling, which shows that under Lovász Local Lemma-like conditions it is not only possible to find a satisfying assignment, it is also possible to generate one approximately uniformly at random from the set of all satisfying assignments. Our approach is a significant departure from earlier techniques in approximate counting, and is based on a framework to bootstrap an oracle for computing marginal probabilities on individual variables. Finally, we give an application of our results to show that it is algorithmically possible to sample from the posterior distribution in an interesting class of graphical models.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"36 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Approximate Counting, the Lovász Local Lemma, and Inference in Graphical Models\",\"authors\":\"Ankur Moitra\",\"doi\":\"10.1145/3268930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a new approach to approximate counting in bounded degree systems with higher-order constraints. Our main result is an algorithm to approximately count the number of solutions to a CNF formula Φ when the width is logarithmic in the maximum degree. This closes an exponential gap between the known upper and lower bounds. Moreover, our algorithm extends straightforwardly to approximate sampling, which shows that under Lovász Local Lemma-like conditions it is not only possible to find a satisfying assignment, it is also possible to generate one approximately uniformly at random from the set of all satisfying assignments. Our approach is a significant departure from earlier techniques in approximate counting, and is based on a framework to bootstrap an oracle for computing marginal probabilities on individual variables. Finally, we give an application of our results to show that it is algorithmically possible to sample from the posterior distribution in an interesting class of graphical models.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"36 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3268930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3268930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们引入了一种具有高阶约束的有界度系统的近似计数的新方法。我们的主要成果是一种算法,当宽度在最大程度上是对数时,可以近似地计算CNF公式Φ的解的个数。这缩小了已知上界和下界之间的指数差距。此外,我们的算法直接扩展到近似抽样,这表明在Lovász类局部引理条件下,不仅可以找到一个满意的赋值,而且还可以从所有满足赋值的集合中近似均匀随机地生成一个。我们的方法与早期的近似计数技术有很大的不同,并且基于一个框架来引导一个oracle来计算单个变量的边际概率。最后,我们给出了我们的结果的一个应用,以表明在一类有趣的图形模型中,从后验分布中抽样是算法上可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Counting, the Lovász Local Lemma, and Inference in Graphical Models
In this article, we introduce a new approach to approximate counting in bounded degree systems with higher-order constraints. Our main result is an algorithm to approximately count the number of solutions to a CNF formula Φ when the width is logarithmic in the maximum degree. This closes an exponential gap between the known upper and lower bounds. Moreover, our algorithm extends straightforwardly to approximate sampling, which shows that under Lovász Local Lemma-like conditions it is not only possible to find a satisfying assignment, it is also possible to generate one approximately uniformly at random from the set of all satisfying assignments. Our approach is a significant departure from earlier techniques in approximate counting, and is based on a framework to bootstrap an oracle for computing marginal probabilities on individual variables. Finally, we give an application of our results to show that it is algorithmically possible to sample from the posterior distribution in an interesting class of graphical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信