J. Razak, Siti Zaleha Wahid, N. Mohamad, P. Puspitasari, R. Jaafar, P. Tutuko
{"title":"r-HDPE/r-PP配比对r-HDPE/r-PP共混物力学、热学和形态行为的影响","authors":"J. Razak, Siti Zaleha Wahid, N. Mohamad, P. Puspitasari, R. Jaafar, P. Tutuko","doi":"10.21776/UB.JEMIS.2020.008.02.1","DOIUrl":null,"url":null,"abstract":"This study has reported the effects of different formulation ratio between recycled high density polyethylene (r-HDPE) and recycled polypropylene (r-PP) into the resulted mechanical, thermal and morphological properties of r-HDPE/r-PP polymeric blends. About five (5) different formulation ratio of r-HDPE/r-PP have been prepared and tested. The best combination ratio between r-HDPE and r-PP was determined in this work. It was found that the 70/30 wt.% of r-HDPE/r-PP blend possessed an outstanding mechanical and physical strength. About 59.80% and 2.30% of positive improvement in comparison to 0/100 wt.% of r-HDPE/r-PP was achieved for both of tensile strength and hardness, respectively. Interestingly, for 70/30 wt.% of r-HDPE/r-PP blend had also experienced major increased in their elongation at break up to 473%. The fracture morphological behavior of the tested samples that were observed via SEM observation, had established the interaction between the structure and properties of produced r-HDPE/r-PP blends, especially on the miscibility state between the r-HDPE and r-PP phases. Thermal evaluation by using the DSC had confirmed the partial miscibility state due to dominant peak shifting at 120 - 140°C and obvious melting peak reduction pattern. Overall, from this study, it was found that the blending between r-HDPE and r-PP into r-HDPE/r-PP blends are feasible to improve the properties of primary phase.","PeriodicalId":31704,"journal":{"name":"Journal of Engineering Management and Competitiveness","volume":"89 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE EFFECTS OF r-HDPE/r-PP FORMULATION RATIO INTO MECHANICAL, THERMAL AND MORPHOLOGICAL BEHAVIOR OF r-HDPE/r-PP POLYMERIC BLENDS\",\"authors\":\"J. Razak, Siti Zaleha Wahid, N. Mohamad, P. Puspitasari, R. Jaafar, P. Tutuko\",\"doi\":\"10.21776/UB.JEMIS.2020.008.02.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has reported the effects of different formulation ratio between recycled high density polyethylene (r-HDPE) and recycled polypropylene (r-PP) into the resulted mechanical, thermal and morphological properties of r-HDPE/r-PP polymeric blends. About five (5) different formulation ratio of r-HDPE/r-PP have been prepared and tested. The best combination ratio between r-HDPE and r-PP was determined in this work. It was found that the 70/30 wt.% of r-HDPE/r-PP blend possessed an outstanding mechanical and physical strength. About 59.80% and 2.30% of positive improvement in comparison to 0/100 wt.% of r-HDPE/r-PP was achieved for both of tensile strength and hardness, respectively. Interestingly, for 70/30 wt.% of r-HDPE/r-PP blend had also experienced major increased in their elongation at break up to 473%. The fracture morphological behavior of the tested samples that were observed via SEM observation, had established the interaction between the structure and properties of produced r-HDPE/r-PP blends, especially on the miscibility state between the r-HDPE and r-PP phases. Thermal evaluation by using the DSC had confirmed the partial miscibility state due to dominant peak shifting at 120 - 140°C and obvious melting peak reduction pattern. Overall, from this study, it was found that the blending between r-HDPE and r-PP into r-HDPE/r-PP blends are feasible to improve the properties of primary phase.\",\"PeriodicalId\":31704,\"journal\":{\"name\":\"Journal of Engineering Management and Competitiveness\",\"volume\":\"89 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Management and Competitiveness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/UB.JEMIS.2020.008.02.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Management and Competitiveness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/UB.JEMIS.2020.008.02.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE EFFECTS OF r-HDPE/r-PP FORMULATION RATIO INTO MECHANICAL, THERMAL AND MORPHOLOGICAL BEHAVIOR OF r-HDPE/r-PP POLYMERIC BLENDS
This study has reported the effects of different formulation ratio between recycled high density polyethylene (r-HDPE) and recycled polypropylene (r-PP) into the resulted mechanical, thermal and morphological properties of r-HDPE/r-PP polymeric blends. About five (5) different formulation ratio of r-HDPE/r-PP have been prepared and tested. The best combination ratio between r-HDPE and r-PP was determined in this work. It was found that the 70/30 wt.% of r-HDPE/r-PP blend possessed an outstanding mechanical and physical strength. About 59.80% and 2.30% of positive improvement in comparison to 0/100 wt.% of r-HDPE/r-PP was achieved for both of tensile strength and hardness, respectively. Interestingly, for 70/30 wt.% of r-HDPE/r-PP blend had also experienced major increased in their elongation at break up to 473%. The fracture morphological behavior of the tested samples that were observed via SEM observation, had established the interaction between the structure and properties of produced r-HDPE/r-PP blends, especially on the miscibility state between the r-HDPE and r-PP phases. Thermal evaluation by using the DSC had confirmed the partial miscibility state due to dominant peak shifting at 120 - 140°C and obvious melting peak reduction pattern. Overall, from this study, it was found that the blending between r-HDPE and r-PP into r-HDPE/r-PP blends are feasible to improve the properties of primary phase.