Aldair Doria, Andrés Rodríguez Toscano, Rafael Ramírez Restrepo
{"title":"用ansys分析离心泵的气蚀预防","authors":"Aldair Doria, Andrés Rodríguez Toscano, Rafael Ramírez Restrepo","doi":"10.5937/jaes0-41451","DOIUrl":null,"url":null,"abstract":"In this paper, a computational fluid dynamic (CFD) model was developed to assess cavitation phenomenon and its local effects on a centrifugal pump. The model included the temperature of the fluid, rotational velocity, and geometric configuration of the suction. The model was validated using the pump characteristics curves of the manufacturer with an error of 5%. Also, the minimum pressure contours and the vapor volume fraction were plotted. These contours show the pump boundary conditions (temperature and angular velocity) before cavitation occurs. Thus, the impeller zone where the cavitation phenomenon is more susceptible to occurrence was identified. In addition, this analysis determined characteristic parameters such as the limit on fluid temperature, the limiting angular velocity of the pump and the ratio between the diameters of the suction pipe and the pump inlet diameter. The proposed methodology is aimed as a reference for the study of local operating parameters to avoid cavitation in various types of hydraulic pumps. ","PeriodicalId":35468,"journal":{"name":"Journal of Applied Engineering Science","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAVITATION PREVENTATION IN CENTRIFUGAL PUMPS USING ANSYS\",\"authors\":\"Aldair Doria, Andrés Rodríguez Toscano, Rafael Ramírez Restrepo\",\"doi\":\"10.5937/jaes0-41451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a computational fluid dynamic (CFD) model was developed to assess cavitation phenomenon and its local effects on a centrifugal pump. The model included the temperature of the fluid, rotational velocity, and geometric configuration of the suction. The model was validated using the pump characteristics curves of the manufacturer with an error of 5%. Also, the minimum pressure contours and the vapor volume fraction were plotted. These contours show the pump boundary conditions (temperature and angular velocity) before cavitation occurs. Thus, the impeller zone where the cavitation phenomenon is more susceptible to occurrence was identified. In addition, this analysis determined characteristic parameters such as the limit on fluid temperature, the limiting angular velocity of the pump and the ratio between the diameters of the suction pipe and the pump inlet diameter. The proposed methodology is aimed as a reference for the study of local operating parameters to avoid cavitation in various types of hydraulic pumps. \",\"PeriodicalId\":35468,\"journal\":{\"name\":\"Journal of Applied Engineering Science\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/jaes0-41451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/jaes0-41451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
CAVITATION PREVENTATION IN CENTRIFUGAL PUMPS USING ANSYS
In this paper, a computational fluid dynamic (CFD) model was developed to assess cavitation phenomenon and its local effects on a centrifugal pump. The model included the temperature of the fluid, rotational velocity, and geometric configuration of the suction. The model was validated using the pump characteristics curves of the manufacturer with an error of 5%. Also, the minimum pressure contours and the vapor volume fraction were plotted. These contours show the pump boundary conditions (temperature and angular velocity) before cavitation occurs. Thus, the impeller zone where the cavitation phenomenon is more susceptible to occurrence was identified. In addition, this analysis determined characteristic parameters such as the limit on fluid temperature, the limiting angular velocity of the pump and the ratio between the diameters of the suction pipe and the pump inlet diameter. The proposed methodology is aimed as a reference for the study of local operating parameters to avoid cavitation in various types of hydraulic pumps.
期刊介绍:
Since 2002 iipp build cooperation with its clients established on wealthy experience, interchangeable respect and trust and permanently arrangement with the purpose of successfully realization of projects recognizable according to good organization and high quality of provided favors. Working as unique team of highly motivated experts, Institute iipp provides to its customers the most high-quality solutions in domain of engineering consulting.