基于联合概率数据关联滤波和多模型交互的检测前跟踪算法

Andrea Mazzù, Simone Chiappino, L. Marcenaro, C. Regazzoni
{"title":"基于联合概率数据关联滤波和多模型交互的检测前跟踪算法","authors":"Andrea Mazzù, Simone Chiappino, L. Marcenaro, C. Regazzoni","doi":"10.1109/ICIP.2014.7026002","DOIUrl":null,"url":null,"abstract":"Detection of dim moving point targets in cluttered background can have a great impact on the tracking performances. This may become a crucial problem, especially in low-SNR environments, where target characteristics are highly susceptible to corruption. In this paper, an extended target model, namely Interacting Multiple Model (IMM), applied to Track-Before-Detect (TBD) based detection algorithm, for far objects, in infrared (IR) sequences is presented. The approach can automatically adapts the kinematic parameter estimations, such as position and velocity, in accordance with the predictions as dimensions of the target change. A sub-par sensor can cause tracking problems. In particular, for a single object, noisy observations (i.e. fragmented measures) could be associated to different tracks. In order to avoid this problem, presented framework introduces a cooperative mechanism between Joint Probabilistic Data Association Filter (JPDAF) and IMM. The experimental results on real and simulated sequences demonstrate effectiveness of the proposed approach.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"7 1","pages":"4947-4951"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A track-before-detect algorithm using joint probabilistic data association filter and interacting multiple models\",\"authors\":\"Andrea Mazzù, Simone Chiappino, L. Marcenaro, C. Regazzoni\",\"doi\":\"10.1109/ICIP.2014.7026002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of dim moving point targets in cluttered background can have a great impact on the tracking performances. This may become a crucial problem, especially in low-SNR environments, where target characteristics are highly susceptible to corruption. In this paper, an extended target model, namely Interacting Multiple Model (IMM), applied to Track-Before-Detect (TBD) based detection algorithm, for far objects, in infrared (IR) sequences is presented. The approach can automatically adapts the kinematic parameter estimations, such as position and velocity, in accordance with the predictions as dimensions of the target change. A sub-par sensor can cause tracking problems. In particular, for a single object, noisy observations (i.e. fragmented measures) could be associated to different tracks. In order to avoid this problem, presented framework introduces a cooperative mechanism between Joint Probabilistic Data Association Filter (JPDAF) and IMM. The experimental results on real and simulated sequences demonstrate effectiveness of the proposed approach.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"7 1\",\"pages\":\"4947-4951\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7026002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在混乱背景下,弱小运动点目标的检测对跟踪性能有很大影响。这可能会成为一个关键问题,特别是在低信噪比环境中,目标特征非常容易受到破坏。本文提出了一种扩展的目标模型,即相互作用多模型(IMM),并将其应用于红外序列中基于检测前跟踪(TBD)的远距离目标检测算法。该方法可以在目标尺寸发生变化时,根据预测自适应位置、速度等运动参数的估计。低于标准的传感器可能导致跟踪问题。特别是,对于单个对象,噪声观测(即碎片测量)可能与不同的轨道相关联。为了避免这一问题,该框架引入了联合概率数据关联过滤器(JPDAF)与IMM之间的协作机制。在真实序列和模拟序列上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A track-before-detect algorithm using joint probabilistic data association filter and interacting multiple models
Detection of dim moving point targets in cluttered background can have a great impact on the tracking performances. This may become a crucial problem, especially in low-SNR environments, where target characteristics are highly susceptible to corruption. In this paper, an extended target model, namely Interacting Multiple Model (IMM), applied to Track-Before-Detect (TBD) based detection algorithm, for far objects, in infrared (IR) sequences is presented. The approach can automatically adapts the kinematic parameter estimations, such as position and velocity, in accordance with the predictions as dimensions of the target change. A sub-par sensor can cause tracking problems. In particular, for a single object, noisy observations (i.e. fragmented measures) could be associated to different tracks. In order to avoid this problem, presented framework introduces a cooperative mechanism between Joint Probabilistic Data Association Filter (JPDAF) and IMM. The experimental results on real and simulated sequences demonstrate effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信