Ardalan Lotfi, C. Heist, Alexander Warren, M. Navaei, P. Hesketh
{"title":"铂平衡悬臂式气相色谱热导检测器的应用","authors":"Ardalan Lotfi, C. Heist, Alexander Warren, M. Navaei, P. Hesketh","doi":"10.1109/SENSORS43011.2019.8956779","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design, fabrication and experimental evaluation of a platinum balanced cantilever-based TCD. The TCD is fabricated by sandwiching a thin layer of Al2O3 between platinum layers. The residual stress in platinum films were used to keep the cantilever flat. The miniaturization and geometric design of the TCD facilitates high operating temperature of 300 ºC with a power consumption of 8 mW. The sensor’s sensitivity to temperature and flow rate changes was evaluated for several operating temperatures, 105, 140 and 300 ºC. It revealed that sensitivity to temperature changes decreases as the sensor’s operating temperature increases. The TCD was connected to a GC system to compare its detection performance with a standard FID for a hydrocarbon mixture. The platinum balanced TCD also succeeded in detecting 5 ppm of ammonia.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Platinum Balanced Cantilever-based Thermal Conductivity Detector for Gas Chromatography Application\",\"authors\":\"Ardalan Lotfi, C. Heist, Alexander Warren, M. Navaei, P. Hesketh\",\"doi\":\"10.1109/SENSORS43011.2019.8956779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the design, fabrication and experimental evaluation of a platinum balanced cantilever-based TCD. The TCD is fabricated by sandwiching a thin layer of Al2O3 between platinum layers. The residual stress in platinum films were used to keep the cantilever flat. The miniaturization and geometric design of the TCD facilitates high operating temperature of 300 ºC with a power consumption of 8 mW. The sensor’s sensitivity to temperature and flow rate changes was evaluated for several operating temperatures, 105, 140 and 300 ºC. It revealed that sensitivity to temperature changes decreases as the sensor’s operating temperature increases. The TCD was connected to a GC system to compare its detection performance with a standard FID for a hydrocarbon mixture. The platinum balanced TCD also succeeded in detecting 5 ppm of ammonia.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"8 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Platinum Balanced Cantilever-based Thermal Conductivity Detector for Gas Chromatography Application
In this paper, we present the design, fabrication and experimental evaluation of a platinum balanced cantilever-based TCD. The TCD is fabricated by sandwiching a thin layer of Al2O3 between platinum layers. The residual stress in platinum films were used to keep the cantilever flat. The miniaturization and geometric design of the TCD facilitates high operating temperature of 300 ºC with a power consumption of 8 mW. The sensor’s sensitivity to temperature and flow rate changes was evaluated for several operating temperatures, 105, 140 and 300 ºC. It revealed that sensitivity to temperature changes decreases as the sensor’s operating temperature increases. The TCD was connected to a GC system to compare its detection performance with a standard FID for a hydrocarbon mixture. The platinum balanced TCD also succeeded in detecting 5 ppm of ammonia.