更多关于无三角形图中的稀疏半部分

Pub Date : 2021-04-19 DOI:10.1070/SM9615
A. Razborov
{"title":"更多关于无三角形图中的稀疏半部分","authors":"A. Razborov","doi":"10.1070/SM9615","DOIUrl":null,"url":null,"abstract":"One of Erdős’s conjectures states that every triangle-free graph on vertices has an induced subgraph on vertices with at most edges. We report several partial results towards this conjecture. In particular, we establish the new bound on the number of edges in the general case. We completely prove the conjecture for graphs of girth , for graphs with independence number and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"More about sparse halves in triangle-free graphs\",\"authors\":\"A. Razborov\",\"doi\":\"10.1070/SM9615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of Erdős’s conjectures states that every triangle-free graph on vertices has an induced subgraph on vertices with at most edges. We report several partial results towards this conjecture. In particular, we establish the new bound on the number of edges in the general case. We completely prove the conjecture for graphs of girth , for graphs with independence number and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Erdős的一个猜想指出,每个顶点上的无三角形图都有一个顶点上的诱导子图,其边最多。我们报告了这个猜想的几个部分结果。特别地,我们建立了一般情况下边数的新界。完整地证明了周长图、独立数图和强正则图的猜想。这三类中的每一类都包括已知的(推测的)极值构型,5环和Petersen图。参考书目:21篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
More about sparse halves in triangle-free graphs
One of Erdős’s conjectures states that every triangle-free graph on vertices has an induced subgraph on vertices with at most edges. We report several partial results towards this conjecture. In particular, we establish the new bound on the number of edges in the general case. We completely prove the conjecture for graphs of girth , for graphs with independence number and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信