{"title":"更多关于无三角形图中的稀疏半部分","authors":"A. Razborov","doi":"10.1070/SM9615","DOIUrl":null,"url":null,"abstract":"One of Erdős’s conjectures states that every triangle-free graph on vertices has an induced subgraph on vertices with at most edges. We report several partial results towards this conjecture. In particular, we establish the new bound on the number of edges in the general case. We completely prove the conjecture for graphs of girth , for graphs with independence number and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"20 1","pages":"109 - 128"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"More about sparse halves in triangle-free graphs\",\"authors\":\"A. Razborov\",\"doi\":\"10.1070/SM9615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of Erdős’s conjectures states that every triangle-free graph on vertices has an induced subgraph on vertices with at most edges. We report several partial results towards this conjecture. In particular, we establish the new bound on the number of edges in the general case. We completely prove the conjecture for graphs of girth , for graphs with independence number and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.\",\"PeriodicalId\":49573,\"journal\":{\"name\":\"Sbornik Mathematics\",\"volume\":\"20 1\",\"pages\":\"109 - 128\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sbornik Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9615\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
One of Erdős’s conjectures states that every triangle-free graph on vertices has an induced subgraph on vertices with at most edges. We report several partial results towards this conjecture. In particular, we establish the new bound on the number of edges in the general case. We completely prove the conjecture for graphs of girth , for graphs with independence number and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in:
Mathematical analysis
Ordinary differential equations
Partial differential equations
Mathematical physics
Geometry
Algebra
Functional analysis