高效的移动PACE实施

A. Wiesmaier, M. Horsch, Johannes Braun, Franziskus Kiefer, D. Hühnlein, Falko Strenzke, J. Buchmann
{"title":"高效的移动PACE实施","authors":"A. Wiesmaier, M. Horsch, Johannes Braun, Franziskus Kiefer, D. Hühnlein, Falko Strenzke, J. Buchmann","doi":"10.1145/1966913.1966936","DOIUrl":null,"url":null,"abstract":"Many future electronic identity cards will be equipped with a contact-less interface. Analysts expect that a significant proportion of future mobile phones support Near Field Communication (NFC) technology. Thus, it is a reasonable approach to use the cell phone as mobile smart card terminal, which in particular supports the Password Authenticated Connection Establishment (PACE) protocol to ensure user consent and to protect the wireless interface between the mobile phone and the smart card. While there are efficient PACE implementations for smart cards, there does not seem to be an efficient and platform independent solution for mobile terminals. Therefore we provide a new implementation using the Java Micro Edition (Java ME), which is supported by almost all modern mobile phones. However, the benchmarks of our first, straightforward PACE implementation on an NFC-enabled mobile phone have shown that improvement is needed. In order to reach a user friendly performance we implemented an optimized version, which, as of now, is restricted to optimizations which can be realized using features of existing Java ME libraries.\n In the work at hand we present a review of the relevant algorithms and provide benchmarks of the corresponding arithmetic functions in different Java ME libraries. We discuss the different optimization approaches, introduce our optimized PACE implementation, and provide timings for a desktop PC and a mobile phone in comparison to the straightforward version. Finally, we investigate potential side channel attacks on the optimized implementation.","PeriodicalId":72308,"journal":{"name":"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An efficient mobile PACE implementation\",\"authors\":\"A. Wiesmaier, M. Horsch, Johannes Braun, Franziskus Kiefer, D. Hühnlein, Falko Strenzke, J. Buchmann\",\"doi\":\"10.1145/1966913.1966936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many future electronic identity cards will be equipped with a contact-less interface. Analysts expect that a significant proportion of future mobile phones support Near Field Communication (NFC) technology. Thus, it is a reasonable approach to use the cell phone as mobile smart card terminal, which in particular supports the Password Authenticated Connection Establishment (PACE) protocol to ensure user consent and to protect the wireless interface between the mobile phone and the smart card. While there are efficient PACE implementations for smart cards, there does not seem to be an efficient and platform independent solution for mobile terminals. Therefore we provide a new implementation using the Java Micro Edition (Java ME), which is supported by almost all modern mobile phones. However, the benchmarks of our first, straightforward PACE implementation on an NFC-enabled mobile phone have shown that improvement is needed. In order to reach a user friendly performance we implemented an optimized version, which, as of now, is restricted to optimizations which can be realized using features of existing Java ME libraries.\\n In the work at hand we present a review of the relevant algorithms and provide benchmarks of the corresponding arithmetic functions in different Java ME libraries. We discuss the different optimization approaches, introduce our optimized PACE implementation, and provide timings for a desktop PC and a mobile phone in comparison to the straightforward version. Finally, we investigate potential side channel attacks on the optimized implementation.\",\"PeriodicalId\":72308,\"journal\":{\"name\":\"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1966913.1966936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1966913.1966936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

许多未来的电子身份证将配备非接触式界面。分析人士预计,未来很大一部分手机将支持近场通信(NFC)技术。因此,使用手机作为移动智能卡终端是一种合理的方法,特别是支持密码认证连接建立(PACE)协议,以确保用户同意并保护手机与智能卡之间的无线接口。虽然有针对智能卡的高效PACE实现,但似乎还没有针对移动终端的高效且独立于平台的解决方案。因此,我们提供了一种使用Java Micro Edition (Java ME)的新实现,它几乎被所有现代手机所支持。然而,我们在支持nfc的移动电话上的第一个直接的PACE实现的基准测试表明,需要改进。为了达到用户友好的性能,我们实现了一个优化版本,到目前为止,它仅限于使用现有Java ME库的特性来实现的优化。在手头的工作中,我们回顾了相关算法,并提供了不同Java ME库中相应算术函数的基准测试。我们将讨论不同的优化方法,介绍我们优化的PACE实现,并提供桌面PC和移动电话的计时,与简单版本进行比较。最后,我们研究了优化实现中潜在的侧信道攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient mobile PACE implementation
Many future electronic identity cards will be equipped with a contact-less interface. Analysts expect that a significant proportion of future mobile phones support Near Field Communication (NFC) technology. Thus, it is a reasonable approach to use the cell phone as mobile smart card terminal, which in particular supports the Password Authenticated Connection Establishment (PACE) protocol to ensure user consent and to protect the wireless interface between the mobile phone and the smart card. While there are efficient PACE implementations for smart cards, there does not seem to be an efficient and platform independent solution for mobile terminals. Therefore we provide a new implementation using the Java Micro Edition (Java ME), which is supported by almost all modern mobile phones. However, the benchmarks of our first, straightforward PACE implementation on an NFC-enabled mobile phone have shown that improvement is needed. In order to reach a user friendly performance we implemented an optimized version, which, as of now, is restricted to optimizations which can be realized using features of existing Java ME libraries. In the work at hand we present a review of the relevant algorithms and provide benchmarks of the corresponding arithmetic functions in different Java ME libraries. We discuss the different optimization approaches, introduce our optimized PACE implementation, and provide timings for a desktop PC and a mobile phone in comparison to the straightforward version. Finally, we investigate potential side channel attacks on the optimized implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信