{"title":"一类非线性自由边界问题的全正则性和部分正则性","authors":"Aram Karakhanyan","doi":"10.1016/j.anihpc.2020.09.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we classify the nonnegative global minimizers of the functional</span><span><span><span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>F</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mi>u</mi><mo>></mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo></math></span></span></span> where <em>F</em> satisfies some structural conditions and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> is the characteristic function of a set <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We compute the second variation of the energy and study the properties of the stability operator. The free boundary <span><math><mo>∂</mo><mo>{</mo><mi>u</mi><mo>></mo><mn>0</mn><mo>}</mo></math></span> can be seen as a rectifiable <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span><span> varifold<span><span>. If the free boundary is a Lipschitz multigraph then we show that the first variation of this varifold is bounded. Hence one can use Allard's monotonicity formula to prove the existence of </span>tangent cones<span> modulo<span> a set of small Hausdorff dimension. In particular, we prove that if </span></span></span></span><span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span><span> and the ellipticity constants of the quasilinear elliptic operator generated by </span><em>F</em> are close to 1 then the conical free boundary must be flat.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 4","pages":"Pages 981-999"},"PeriodicalIF":1.8000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.008","citationCount":"2","resultStr":"{\"title\":\"Full and partial regularity for a class of nonlinear free boundary problems\",\"authors\":\"Aram Karakhanyan\",\"doi\":\"10.1016/j.anihpc.2020.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper we classify the nonnegative global minimizers of the functional</span><span><span><span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>F</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mi>u</mi><mo>></mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo></math></span></span></span> where <em>F</em> satisfies some structural conditions and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> is the characteristic function of a set <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We compute the second variation of the energy and study the properties of the stability operator. The free boundary <span><math><mo>∂</mo><mo>{</mo><mi>u</mi><mo>></mo><mn>0</mn><mo>}</mo></math></span> can be seen as a rectifiable <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span><span> varifold<span><span>. If the free boundary is a Lipschitz multigraph then we show that the first variation of this varifold is bounded. Hence one can use Allard's monotonicity formula to prove the existence of </span>tangent cones<span> modulo<span> a set of small Hausdorff dimension. In particular, we prove that if </span></span></span></span><span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span><span> and the ellipticity constants of the quasilinear elliptic operator generated by </span><em>F</em> are close to 1 then the conical free boundary must be flat.</p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 4\",\"pages\":\"Pages 981-999\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.008\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920300949\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300949","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Full and partial regularity for a class of nonlinear free boundary problems
In this paper we classify the nonnegative global minimizers of the functional where F satisfies some structural conditions and is the characteristic function of a set . We compute the second variation of the energy and study the properties of the stability operator. The free boundary can be seen as a rectifiable varifold. If the free boundary is a Lipschitz multigraph then we show that the first variation of this varifold is bounded. Hence one can use Allard's monotonicity formula to prove the existence of tangent cones modulo a set of small Hausdorff dimension. In particular, we prove that if and the ellipticity constants of the quasilinear elliptic operator generated by F are close to 1 then the conical free boundary must be flat.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.