{"title":"超支化聚合物的支化程度。3 AB -单体与AB和abn单体的共聚","authors":"H. Frey, D. Hölter","doi":"10.1002/(SICI)1521-4044(19990201)50:2/3<67::AID-APOL67>3.0.CO;2-W","DOIUrl":null,"url":null,"abstract":"<p>Extending the considerations of previous work (<i>Acta Polym.</i><b> 1997</b>,<i> 48</i>, 30;<i> Acta Polym.</i><b> 1997</b>,<i> 48</i>, 298) the degree of branching (DB) and the average number of branches per non-terminal monomer unit (ANB) are defined and calculated for random copolycondensation of AB<sub><i>m</i></sub> with AB monomers as well as AB<sub><i>m</i></sub> with AB<sub><i>n</i></sub>-monomers in general. Copolymerization of linear AB-comonomers can be used to deliberately lower the DB and ANB of hyperbranched polymers. The DB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB/AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>2</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> for copolycondensation of AB and AB<sub>2</sub> monomers in dependence on the monomer ratio <i> r</i> = [AB]/[AB<sub>2</sub>] and conversion <i> p</i><sub><i>A</i></sub> is DB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB/AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>2</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> = 2 <i>p</i><sub><i>A</i></sub> <i> r</i> + 1/(<i> r</i> + 2)<sup>2</sup>. The DB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB/AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>2</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> for copolymerization is compared to the DB for AB<sub>2</sub> homopolymerization,showing that a relatively small fraction of AB<sub>2</sub> comonomers suffices to obtain considerable degrees of branching. Also, the DB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB/AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>3</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> and ANB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB/AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>3</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> for copolycondensation of AB and AB<sub>3</sub>-monomers are calculated. Finally, a general expression for the DB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>n</mtext>\n </mrow>\n </msub>\n <mtext>AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>m</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> for copolymerization of AB<i><sub>n</sub></i> and AB<i><sub>m</sub></i> monomers (<i>m</i> ≠ <i> n</i>) is derived. The respective expressions for<i> m, n</i> ⪇ 6 are given. It is demonstrated that the ANB<math>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>n</mtext>\n </mrow>\n </msub>\n <mtext>AB</mtext>\n <msub>\n <mtext> </mtext>\n <mrow>\n <mtext>m</mtext>\n </mrow>\n </msub>\n </mrow>\n </msub></math> parameter is more useful to describe the extent of branching of complex copolymers of this type.</p>","PeriodicalId":7162,"journal":{"name":"Acta Polymerica","volume":"50 2-3","pages":"67-76"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers\",\"authors\":\"H. Frey, D. Hölter\",\"doi\":\"10.1002/(SICI)1521-4044(19990201)50:2/3<67::AID-APOL67>3.0.CO;2-W\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extending the considerations of previous work (<i>Acta Polym.</i><b> 1997</b>,<i> 48</i>, 30;<i> Acta Polym.</i><b> 1997</b>,<i> 48</i>, 298) the degree of branching (DB) and the average number of branches per non-terminal monomer unit (ANB) are defined and calculated for random copolycondensation of AB<sub><i>m</i></sub> with AB monomers as well as AB<sub><i>m</i></sub> with AB<sub><i>n</i></sub>-monomers in general. Copolymerization of linear AB-comonomers can be used to deliberately lower the DB and ANB of hyperbranched polymers. The DB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB/AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>2</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> for copolycondensation of AB and AB<sub>2</sub> monomers in dependence on the monomer ratio <i> r</i> = [AB]/[AB<sub>2</sub>] and conversion <i> p</i><sub><i>A</i></sub> is DB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB/AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>2</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> = 2 <i>p</i><sub><i>A</i></sub> <i> r</i> + 1/(<i> r</i> + 2)<sup>2</sup>. The DB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB/AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>2</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> for copolymerization is compared to the DB for AB<sub>2</sub> homopolymerization,showing that a relatively small fraction of AB<sub>2</sub> comonomers suffices to obtain considerable degrees of branching. Also, the DB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB/AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>3</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> and ANB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB/AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>3</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> for copolycondensation of AB and AB<sub>3</sub>-monomers are calculated. Finally, a general expression for the DB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>n</mtext>\\n </mrow>\\n </msub>\\n <mtext>AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>m</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> for copolymerization of AB<i><sub>n</sub></i> and AB<i><sub>m</sub></i> monomers (<i>m</i> ≠ <i> n</i>) is derived. The respective expressions for<i> m, n</i> ⪇ 6 are given. It is demonstrated that the ANB<math>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>n</mtext>\\n </mrow>\\n </msub>\\n <mtext>AB</mtext>\\n <msub>\\n <mtext> </mtext>\\n <mrow>\\n <mtext>m</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub></math> parameter is more useful to describe the extent of branching of complex copolymers of this type.</p>\",\"PeriodicalId\":7162,\"journal\":{\"name\":\"Acta Polymerica\",\"volume\":\"50 2-3\",\"pages\":\"67-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polymerica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291521-4044%2819990201%2950%3A2/3%3C67%3A%3AAID-APOL67%3E3.0.CO%3B2-W\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polymerica","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291521-4044%2819990201%2950%3A2/3%3C67%3A%3AAID-APOL67%3E3.0.CO%3B2-W","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108
摘要
扩展先前工作的考虑(Polym学报,1997,48,30;高分子学报,1997,48,298)的分支度(DB)和每个非末端单体单元(ANB)的平均分支数(DB)的定义和计算的ABm与AB单体以及ABm与一般的abn单体的随机共聚。线性ab共聚物的共聚可以有意降低超支化聚合物的DB和ANB。AB与AB2单体共聚的DB AB/AB 2取决于单体比r = [AB]/[AB2],转化率pA为DB AB/AB 2= 2pa r + 1/(r + 2)2。将共聚的DB AB/AB 2与AB2均聚的DB进行了比较,结果表明,相对较少的AB2共聚单体就足以获得相当程度的支化。同时,AB和ab3单体共聚的DB AB/AB 3和ANB AB/AB 3分别为计算。最后,导出了ABn和ABm单体共聚时(m≠n)的DB ABn ABm的一般表达式。给出了m, n⪇6的表达式。结果表明,ANB - AB - n - AB - m参数更适合于描述该类复合共聚物的支化程度。
Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers
Extending the considerations of previous work (Acta Polym. 1997, 48, 30; Acta Polym. 1997, 48, 298) the degree of branching (DB) and the average number of branches per non-terminal monomer unit (ANB) are defined and calculated for random copolycondensation of ABm with AB monomers as well as ABm with ABn-monomers in general. Copolymerization of linear AB-comonomers can be used to deliberately lower the DB and ANB of hyperbranched polymers. The DB for copolycondensation of AB and AB2 monomers in dependence on the monomer ratio r = [AB]/[AB2] and conversion pA is DB = 2 pA r + 1/( r + 2)2. The DB for copolymerization is compared to the DB for AB2 homopolymerization,showing that a relatively small fraction of AB2 comonomers suffices to obtain considerable degrees of branching. Also, the DB and ANB for copolycondensation of AB and AB3-monomers are calculated. Finally, a general expression for the DB for copolymerization of ABn and ABm monomers (m ≠ n) is derived. The respective expressions for m, n ⪇ 6 are given. It is demonstrated that the ANB parameter is more useful to describe the extent of branching of complex copolymers of this type.