带切向射流入口椭圆管内旋流冷却传热和压力损失特性的数值研究

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Fei Li, Chenglan Xiong, Yu Rao, Yong Luan, Bernhard Weigand
{"title":"带切向射流入口椭圆管内旋流冷却传热和压力损失特性的数值研究","authors":"Fei Li, Chenglan Xiong, Yu Rao, Yong Luan, Bernhard Weigand","doi":"10.1115/1.4063353","DOIUrl":null,"url":null,"abstract":"\n The paper presents a numerical study of the heat transfer, pressure loss and flow characteristics of swirl cooling in elliptical tubes, which are compared to the counterpart of swirl cooling in a circular tube with a diameter of D=50.0 mm under equal passage Reynolds numbers and equal jet Reynolds numbers. The swirl tubes with two kinds of fixed tube length of 12D and 20D are compared, where there are sequentially arranged three tangential jet inlets over the leading tube length of 12D. The numerical results show that the swirl tubes with the tube length of 12D has a much better heat transfer performance. Under equal passage Reynolds numbers, the elliptical swirl tubes with the tube length of 12D show appreciably higher Nusselt numbers by up to 22.8% and lower pressure loss coefficients by up to 69.0% than the circular tube. Under equal jet Reynolds numbers, the elliptical tubes can reduce the global heat transfer performance modestly by up to 25.6%, but reduce the pressure loss much significantly by up to 70.6%. Mostly due to much less pressure loss, the elliptical tubes have remarkably higher thermal performance in terms of the obtained heat transfer coefficient per unit pumping power for both L1=12D and L2=20D. The numerical simulations indicate that the suppression of elliptical tubes on the swirling flow development reduces the heat transfer on the wall between the jet inlets, and decreases the wall shear force and the pressure loss in the tube.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"110 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on Heat Transfer and Pressure Loss Characteristics of Swirl Cooling in Elliptica Tubes with Tangential Jet Inlets\",\"authors\":\"Fei Li, Chenglan Xiong, Yu Rao, Yong Luan, Bernhard Weigand\",\"doi\":\"10.1115/1.4063353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper presents a numerical study of the heat transfer, pressure loss and flow characteristics of swirl cooling in elliptical tubes, which are compared to the counterpart of swirl cooling in a circular tube with a diameter of D=50.0 mm under equal passage Reynolds numbers and equal jet Reynolds numbers. The swirl tubes with two kinds of fixed tube length of 12D and 20D are compared, where there are sequentially arranged three tangential jet inlets over the leading tube length of 12D. The numerical results show that the swirl tubes with the tube length of 12D has a much better heat transfer performance. Under equal passage Reynolds numbers, the elliptical swirl tubes with the tube length of 12D show appreciably higher Nusselt numbers by up to 22.8% and lower pressure loss coefficients by up to 69.0% than the circular tube. Under equal jet Reynolds numbers, the elliptical tubes can reduce the global heat transfer performance modestly by up to 25.6%, but reduce the pressure loss much significantly by up to 70.6%. Mostly due to much less pressure loss, the elliptical tubes have remarkably higher thermal performance in terms of the obtained heat transfer coefficient per unit pumping power for both L1=12D and L2=20D. The numerical simulations indicate that the suppression of elliptical tubes on the swirling flow development reduces the heat transfer on the wall between the jet inlets, and decreases the wall shear force and the pressure loss in the tube.\",\"PeriodicalId\":15937,\"journal\":{\"name\":\"Journal of Heat Transfer-transactions of The Asme\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heat Transfer-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063353\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063353","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文对椭圆管内旋流冷却的传热、压力损失和流动特性进行了数值研究,并与直径为D=50.0 mm的圆形管内旋流冷却在等流道雷诺数和等射流雷诺数条件下进行了比较。比较了固定管长为12D和20D的两种旋流管,其中在12D导管长度上方依次布置了三个切向射流入口。数值结果表明,管长为12D的旋流管具有更好的换热性能。等流道雷诺数下,管长为12D的椭圆旋流管的努塞尔数比圆管高22.8%,压力损失系数比圆管低69.0%。在相同的射流雷诺数下,椭圆管可使整体换热性能降低25.6%,但可使压力损失显著降低70.6%。在L1=12D和L2=20D时,椭圆管的单位泵送功率换热系数显著提高,这主要是由于压力损失小得多。数值模拟结果表明,椭圆管对旋流发展的抑制减少了喷嘴间壁面的换热,减小了壁面剪切力和管内压力损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study on Heat Transfer and Pressure Loss Characteristics of Swirl Cooling in Elliptica Tubes with Tangential Jet Inlets
The paper presents a numerical study of the heat transfer, pressure loss and flow characteristics of swirl cooling in elliptical tubes, which are compared to the counterpart of swirl cooling in a circular tube with a diameter of D=50.0 mm under equal passage Reynolds numbers and equal jet Reynolds numbers. The swirl tubes with two kinds of fixed tube length of 12D and 20D are compared, where there are sequentially arranged three tangential jet inlets over the leading tube length of 12D. The numerical results show that the swirl tubes with the tube length of 12D has a much better heat transfer performance. Under equal passage Reynolds numbers, the elliptical swirl tubes with the tube length of 12D show appreciably higher Nusselt numbers by up to 22.8% and lower pressure loss coefficients by up to 69.0% than the circular tube. Under equal jet Reynolds numbers, the elliptical tubes can reduce the global heat transfer performance modestly by up to 25.6%, but reduce the pressure loss much significantly by up to 70.6%. Mostly due to much less pressure loss, the elliptical tubes have remarkably higher thermal performance in terms of the obtained heat transfer coefficient per unit pumping power for both L1=12D and L2=20D. The numerical simulations indicate that the suppression of elliptical tubes on the swirling flow development reduces the heat transfer on the wall between the jet inlets, and decreases the wall shear force and the pressure loss in the tube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信