基于rfid单标签的多目标频率特征识别与状态检测

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Biaokai Zhu, Zejiao Yang, Yupeng Jia, Shengxin Chen, Jie Song, Sanman Liu, P. Li, Feng Li, Deng-ao Li
{"title":"基于rfid单标签的多目标频率特征识别与状态检测","authors":"Biaokai Zhu, Zejiao Yang, Yupeng Jia, Shengxin Chen, Jie Song, Sanman Liu, P. Li, Feng Li, Deng-ao Li","doi":"10.1145/3615665","DOIUrl":null,"url":null,"abstract":"Vibration is a normal reaction that occurs during the operation of machinery and is very common in industrial systems. How to turn fine-grained vibration perception into visualization, and further predict mechanical failures and reduce property losses based on visual vibration information, which has aroused our thinking. In this paper, the phase information generated by the tag is processed and analyzed, and MFD is proposed, a real-time vibration monitoring and fault-sensing discrimination system. MFD extracts phase information from the original RF signal and converts it into a markov transition map by introducing White Gaussian Noise and a low-pass filter for denoising. To accurately predict the failure of machinery, a deep and machine learning model is introduced to calculate the accuracy of failure analysis, realizing real-time monitoring and fault judgment. The test results show that the average recognition accuracy of vibration can reach 96.07%, and the average recognition accuracy of forward rotation, reverse rotation, oil spill, and screw loosening of motor equipment during long-term operation can reach 98.53%, 99.44%, 97.87%, and 99.91%, respectively, with high robustness.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MFD: Multi-object Frequency Feature Recognition and State Detection Based on RFID-single Tag\",\"authors\":\"Biaokai Zhu, Zejiao Yang, Yupeng Jia, Shengxin Chen, Jie Song, Sanman Liu, P. Li, Feng Li, Deng-ao Li\",\"doi\":\"10.1145/3615665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration is a normal reaction that occurs during the operation of machinery and is very common in industrial systems. How to turn fine-grained vibration perception into visualization, and further predict mechanical failures and reduce property losses based on visual vibration information, which has aroused our thinking. In this paper, the phase information generated by the tag is processed and analyzed, and MFD is proposed, a real-time vibration monitoring and fault-sensing discrimination system. MFD extracts phase information from the original RF signal and converts it into a markov transition map by introducing White Gaussian Noise and a low-pass filter for denoising. To accurately predict the failure of machinery, a deep and machine learning model is introduced to calculate the accuracy of failure analysis, realizing real-time monitoring and fault judgment. The test results show that the average recognition accuracy of vibration can reach 96.07%, and the average recognition accuracy of forward rotation, reverse rotation, oil spill, and screw loosening of motor equipment during long-term operation can reach 98.53%, 99.44%, 97.87%, and 99.91%, respectively, with high robustness.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3615665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3615665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

振动是机械运行过程中发生的一种正常反应,在工业系统中很常见。如何将细粒度的振动感知转化为可视化,并基于视觉振动信息进一步预测机械故障,减少财产损失,这引起了我们的思考。本文对标签产生的相位信息进行处理和分析,提出了一种实时振动监测与故障感知识别系统MFD。MFD从原始射频信号中提取相位信息,通过引入高斯白噪声和低通滤波器进行降噪,将其转换成马尔可夫转换图。为准确预测机械故障,引入深度机器学习模型计算故障分析精度,实现实时监测和故障判断。试验结果表明,该系统对振动的平均识别精度可达96.07%,对电机设备长期运行时的正转、反转、溢油和螺钉松动的平均识别精度分别可达98.53%、99.44%、97.87%和99.91%,具有较高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFD: Multi-object Frequency Feature Recognition and State Detection Based on RFID-single Tag
Vibration is a normal reaction that occurs during the operation of machinery and is very common in industrial systems. How to turn fine-grained vibration perception into visualization, and further predict mechanical failures and reduce property losses based on visual vibration information, which has aroused our thinking. In this paper, the phase information generated by the tag is processed and analyzed, and MFD is proposed, a real-time vibration monitoring and fault-sensing discrimination system. MFD extracts phase information from the original RF signal and converts it into a markov transition map by introducing White Gaussian Noise and a low-pass filter for denoising. To accurately predict the failure of machinery, a deep and machine learning model is introduced to calculate the accuracy of failure analysis, realizing real-time monitoring and fault judgment. The test results show that the average recognition accuracy of vibration can reach 96.07%, and the average recognition accuracy of forward rotation, reverse rotation, oil spill, and screw loosening of motor equipment during long-term operation can reach 98.53%, 99.44%, 97.87%, and 99.91%, respectively, with high robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信