{"title":"二次耦合项不可分离凸极小化模型的优化iPADMM","authors":"Yumin Ma, T. Li, Yongzhong Song, Xingju Cai","doi":"10.1142/s0217595922400024","DOIUrl":null,"url":null,"abstract":"In this paper, we consider nonseparable convex minimization models with quadratic coupling terms arised in many practical applications. We use a majorized indefinite proximal alternating direction method of multipliers (iPADMM) to solve this model. The indefiniteness of proximal matrices allows the function we actually solved to be no longer the majorization of the original function in each subproblem. While the convergence still can be guaranteed and larger stepsize is permitted which can speed up convergence. For this model, we analyze the global convergence of majorized iPADMM with two different techniques and the sublinear convergence rate in the nonergodic sense. Numerical experiments illustrate the advantages of the indefinite proximal matrices over the positive definite or the semi-definite proximal matrices.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Majorized iPADMM for Nonseparable Convex Minimization Models with Quadratic Coupling Terms\",\"authors\":\"Yumin Ma, T. Li, Yongzhong Song, Xingju Cai\",\"doi\":\"10.1142/s0217595922400024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider nonseparable convex minimization models with quadratic coupling terms arised in many practical applications. We use a majorized indefinite proximal alternating direction method of multipliers (iPADMM) to solve this model. The indefiniteness of proximal matrices allows the function we actually solved to be no longer the majorization of the original function in each subproblem. While the convergence still can be guaranteed and larger stepsize is permitted which can speed up convergence. For this model, we analyze the global convergence of majorized iPADMM with two different techniques and the sublinear convergence rate in the nonergodic sense. Numerical experiments illustrate the advantages of the indefinite proximal matrices over the positive definite or the semi-definite proximal matrices.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595922400024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922400024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Majorized iPADMM for Nonseparable Convex Minimization Models with Quadratic Coupling Terms
In this paper, we consider nonseparable convex minimization models with quadratic coupling terms arised in many practical applications. We use a majorized indefinite proximal alternating direction method of multipliers (iPADMM) to solve this model. The indefiniteness of proximal matrices allows the function we actually solved to be no longer the majorization of the original function in each subproblem. While the convergence still can be guaranteed and larger stepsize is permitted which can speed up convergence. For this model, we analyze the global convergence of majorized iPADMM with two different techniques and the sublinear convergence rate in the nonergodic sense. Numerical experiments illustrate the advantages of the indefinite proximal matrices over the positive definite or the semi-definite proximal matrices.