有能力网络的策略马尔可夫流量均衡模型

Maëlle Zimmermann, Emma Frejinger, P. Marcotte
{"title":"有能力网络的策略马尔可夫流量均衡模型","authors":"Maëlle Zimmermann, Emma Frejinger, P. Marcotte","doi":"10.1287/TRSC.2020.1033","DOIUrl":null,"url":null,"abstract":"In the realm of traffic assignment over a network involving rigid arc capacities, the aim of the present work is to generalize the model of Marcotte, Nguyen, and Schoeb [Marcotte P, Nguyen S, Schoeb A (2004) A strategic flow model of traffic assignment in static capacitated networks. Oper. Res. 52(2):191–212.] by casting it within a stochastic user equilibrium framework. The strength of the proposed model is to incorporate two sources of stochasticity stemming, respectively, from the users’ imperfect knowledge regarding arc costs (represented by a discrete choice model) and the probability of not accessing saturated arcs. Moreover, the arc-based formulation extends the Markovian traffic equilibrium model of Baillon and Cominetti [Baillon JB, Cominetti R ( 2008 ) Markovian traffic equilibrium. Math. Programming 111(1-2):33–56.] through the explicit consideration of capacities. This paper is restricted to the case of acyclic networks, for which we present solution algorithms and numerical experiments.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"117 1","pages":"574-591"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks\",\"authors\":\"Maëlle Zimmermann, Emma Frejinger, P. Marcotte\",\"doi\":\"10.1287/TRSC.2020.1033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of traffic assignment over a network involving rigid arc capacities, the aim of the present work is to generalize the model of Marcotte, Nguyen, and Schoeb [Marcotte P, Nguyen S, Schoeb A (2004) A strategic flow model of traffic assignment in static capacitated networks. Oper. Res. 52(2):191–212.] by casting it within a stochastic user equilibrium framework. The strength of the proposed model is to incorporate two sources of stochasticity stemming, respectively, from the users’ imperfect knowledge regarding arc costs (represented by a discrete choice model) and the probability of not accessing saturated arcs. Moreover, the arc-based formulation extends the Markovian traffic equilibrium model of Baillon and Cominetti [Baillon JB, Cominetti R ( 2008 ) Markovian traffic equilibrium. Math. Programming 111(1-2):33–56.] through the explicit consideration of capacities. This paper is restricted to the case of acyclic networks, for which we present solution algorithms and numerical experiments.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"117 1\",\"pages\":\"574-591\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/TRSC.2020.1033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/TRSC.2020.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在涉及刚性容量的网络交通分配领域,本研究的目的是推广Marcotte, Nguyen和Schoeb [Marcotte P, Nguyen S, Schoeb a(2004)]的模型。静态容量网络中交通分配的策略流模型。③。研究》52(2):191 - 212。通过将其置于随机用户平衡框架中。所提出的模型的优势在于结合了两个随机来源,分别来自用户对电弧成本(由离散选择模型表示)的不完善知识和不访问饱和电弧的概率。此外,基于弧线的公式扩展了Baillon和Cominetti [Baillon JB, Cominetti R(2008)]的马尔可夫交通均衡模型。数学。编程111(1 - 2):33-56。通过对能力的明确考虑。本文只讨论无环网络的情况,给出了求解算法和数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks
In the realm of traffic assignment over a network involving rigid arc capacities, the aim of the present work is to generalize the model of Marcotte, Nguyen, and Schoeb [Marcotte P, Nguyen S, Schoeb A (2004) A strategic flow model of traffic assignment in static capacitated networks. Oper. Res. 52(2):191–212.] by casting it within a stochastic user equilibrium framework. The strength of the proposed model is to incorporate two sources of stochasticity stemming, respectively, from the users’ imperfect knowledge regarding arc costs (represented by a discrete choice model) and the probability of not accessing saturated arcs. Moreover, the arc-based formulation extends the Markovian traffic equilibrium model of Baillon and Cominetti [Baillon JB, Cominetti R ( 2008 ) Markovian traffic equilibrium. Math. Programming 111(1-2):33–56.] through the explicit consideration of capacities. This paper is restricted to the case of acyclic networks, for which we present solution algorithms and numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信