一般过滤中具有跳跃和两个完全分离的非规则障碍的BSDEs

Pub Date : 2021-01-01 DOI:10.30757/ALEA.V18-28
M. Marzougue, M. Otmani
{"title":"一般过滤中具有跳跃和两个完全分离的非规则障碍的BSDEs","authors":"M. Marzougue, M. Otmani","doi":"10.30757/ALEA.V18-28","DOIUrl":null,"url":null,"abstract":"We consider a doubly reflected backward stochastic differential equations with jumps and two completely separated optional barriers in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We suppose that the barriers have trajectories with left and right finite limits. We provide the existence and uniqueness result when the coefficient is stochastic Lipschitz by using a penalization method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BSDEs with jumps and two completely separated\\nirregular barriers in a general filtration\",\"authors\":\"M. Marzougue, M. Otmani\",\"doi\":\"10.30757/ALEA.V18-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a doubly reflected backward stochastic differential equations with jumps and two completely separated optional barriers in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We suppose that the barriers have trajectories with left and right finite limits. We provide the existence and uniqueness result when the coefficient is stochastic Lipschitz by using a penalization method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.V18-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.V18-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑了一个支持一维布朗运动和独立泊松随机测量的一般过滤系统中具有跳跃和两个完全分离的可选障碍的双反射后向随机微分方程。我们假设势垒有左右有限极限的轨迹。利用惩罚方法给出了系数为随机Lipschitz时的存在唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
BSDEs with jumps and two completely separated irregular barriers in a general filtration
We consider a doubly reflected backward stochastic differential equations with jumps and two completely separated optional barriers in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We suppose that the barriers have trajectories with left and right finite limits. We provide the existence and uniqueness result when the coefficient is stochastic Lipschitz by using a penalization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信