飞秒激光烧蚀近场增强硅表面纳米结构研究

G. Miyaji, Kaifeng Zhang, J. Fujita, K. Miyazaki
{"title":"飞秒激光烧蚀近场增强硅表面纳米结构研究","authors":"G. Miyaji, Kaifeng Zhang, J. Fujita, K. Miyazaki","doi":"10.1109/CLEOE.2011.5943347","DOIUrl":null,"url":null,"abstract":"Intense ultrashort laser pulses are able to produce periodic nanostructures through ultrafast ablation of solid surfaces, where the observed size of nanostructures is much smaller than the laser wavelength [1,2]. Intensive studies have been made for a variety of target materials to elucidate the nanostructuring. However, the physical process is not completely understood yet. Based on a series of experimental studies for hard thin films such diamond-like carbon and TiN [2,3], we have shown that near-field enhanced with femtosecond (fs) laser pulses plays the essential role in initiating the nanoscale ablation on the target surface [4], and the origin of nano-periodicity observed can be attributed to the excitation of surface plasmon polaritons (SPPs) in the surface layer [5] where the dielectric properties are rapidly changed due to the generation of high-density free electrons.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":"27 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructuring of silicon surface with near-field enhanced in femtosecond laser ablation\",\"authors\":\"G. Miyaji, Kaifeng Zhang, J. Fujita, K. Miyazaki\",\"doi\":\"10.1109/CLEOE.2011.5943347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense ultrashort laser pulses are able to produce periodic nanostructures through ultrafast ablation of solid surfaces, where the observed size of nanostructures is much smaller than the laser wavelength [1,2]. Intensive studies have been made for a variety of target materials to elucidate the nanostructuring. However, the physical process is not completely understood yet. Based on a series of experimental studies for hard thin films such diamond-like carbon and TiN [2,3], we have shown that near-field enhanced with femtosecond (fs) laser pulses plays the essential role in initiating the nanoscale ablation on the target surface [4], and the origin of nano-periodicity observed can be attributed to the excitation of surface plasmon polaritons (SPPs) in the surface layer [5] where the dielectric properties are rapidly changed due to the generation of high-density free electrons.\",\"PeriodicalId\":6331,\"journal\":{\"name\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"volume\":\"27 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2011.5943347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5943347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强超短激光脉冲能够通过超快烧蚀固体表面产生周期性纳米结构,其中观察到的纳米结构尺寸远小于激光波长[1,2]。为了阐明纳米结构,人们对各种靶材料进行了深入的研究。然而,物理过程还没有完全被理解。基于对类金刚石和TiN等硬质薄膜的一系列实验研究[2,3],我们已经表明,飞秒(fs)激光脉冲近场增强在启动靶表面纳米级烧蚀方面起着至关重要的作用。观察到的纳米周期性的起源可以归因于表面等离子激元(SPPs)在[5]的激发,在那里由于高密度自由电子的产生而迅速改变了介电性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanostructuring of silicon surface with near-field enhanced in femtosecond laser ablation
Intense ultrashort laser pulses are able to produce periodic nanostructures through ultrafast ablation of solid surfaces, where the observed size of nanostructures is much smaller than the laser wavelength [1,2]. Intensive studies have been made for a variety of target materials to elucidate the nanostructuring. However, the physical process is not completely understood yet. Based on a series of experimental studies for hard thin films such diamond-like carbon and TiN [2,3], we have shown that near-field enhanced with femtosecond (fs) laser pulses plays the essential role in initiating the nanoscale ablation on the target surface [4], and the origin of nano-periodicity observed can be attributed to the excitation of surface plasmon polaritons (SPPs) in the surface layer [5] where the dielectric properties are rapidly changed due to the generation of high-density free electrons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信