完全流形上参数椭圆方程解的多项式估计

M. Kohr, S. Labrunie, H. Mohsen, V. Nistor
{"title":"完全流形上参数椭圆方程解的多项式估计","authors":"M. Kohr, S. Labrunie, H. Mohsen, V. Nistor","doi":"10.24193/subbmath.2022.2.13","DOIUrl":null,"url":null,"abstract":"\"Let $P : \\CI(M; E) \\to \\CI(M; F)$ be an order $\\mu$ differential operator with coefficients $a$ and $P_k := P : H^{s_0 + k +\\mu}(M; E) \\to H^{s_0 + k}(M; F)$. We prove polynomial norm estimates for the solution $P_0^{-1}f$ of the form $$\\|P_0^{-1}f\\|_{H^{s_0 + k + \\mu}(M; E)} \\le C \\sum_{q=0}^{k} \\, \\| P_0^{-1} \\|^{q+1} \\,\\|a \\|_{W^{|s_0|+k}}^{q} \\, \\| f \\|_{H^{s_0 + k - q}},$$ (thus in higher order Sobolev spaces, which amounts also to a parametric regularity result). The assumptions are that $E, F \\to M$ are Hermitian vector bundles and that $M$ is a complete manifold satisfying the Fr\\'echet Finiteness Condition (FFC), which was introduced in (Kohr and Nistor, Annals of Global Analysis and Geometry, 2022). These estimates are useful for uncertainty quantification, since the coefficient $a$ can be regarded as a vector valued random variable. We use these results to prove integrability of the norm $\\|P_k^{-1}f\\|$ of the solution of $P_k u = f$ with respect to suitable Gaussian measures.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polynomial estimates for solutions of parametric elliptic equations on complete manifolds\",\"authors\":\"M. Kohr, S. Labrunie, H. Mohsen, V. Nistor\",\"doi\":\"10.24193/subbmath.2022.2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Let $P : \\\\CI(M; E) \\\\to \\\\CI(M; F)$ be an order $\\\\mu$ differential operator with coefficients $a$ and $P_k := P : H^{s_0 + k +\\\\mu}(M; E) \\\\to H^{s_0 + k}(M; F)$. We prove polynomial norm estimates for the solution $P_0^{-1}f$ of the form $$\\\\|P_0^{-1}f\\\\|_{H^{s_0 + k + \\\\mu}(M; E)} \\\\le C \\\\sum_{q=0}^{k} \\\\, \\\\| P_0^{-1} \\\\|^{q+1} \\\\,\\\\|a \\\\|_{W^{|s_0|+k}}^{q} \\\\, \\\\| f \\\\|_{H^{s_0 + k - q}},$$ (thus in higher order Sobolev spaces, which amounts also to a parametric regularity result). The assumptions are that $E, F \\\\to M$ are Hermitian vector bundles and that $M$ is a complete manifold satisfying the Fr\\\\'echet Finiteness Condition (FFC), which was introduced in (Kohr and Nistor, Annals of Global Analysis and Geometry, 2022). These estimates are useful for uncertainty quantification, since the coefficient $a$ can be regarded as a vector valued random variable. We use these results to prove integrability of the norm $\\\\|P_k^{-1}f\\\\|$ of the solution of $P_k u = f$ with respect to suitable Gaussian measures.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$P : \CI(M; E) \to \CI(M; F)$是一个阶$\mu$微分算子,其系数为$a$和$P_k := P : H^{s_0 + k +\mu}(M; E) \to H^{s_0 + k}(M; F)$。我们证明了形式为$$\|P_0^{-1}f\|_{H^{s_0 + k + \mu}(M; E)} \le C \sum_{q=0}^{k} \, \| P_0^{-1} \|^{q+1} \,\|a \|_{W^{|s_0|+k}}^{q} \, \| f \|_{H^{s_0 + k - q}},$$的解$P_0^{-1}f$的多项式范数估计(因此在高阶Sobolev空间中,这也相当于参数正则性结果)。假设$E, F \to M$是厄米向量束,$M$是满足fr有限条件(FFC)的完整流形,该条件在Kohr和Nistor, Annals of Global Analysis and Geometry, 2022中提出。这些估计对于不确定性量化是有用的,因为系数$a$可以看作是一个有向量值的随机变量。我们用这些结果证明了$P_k u = f$解的范数$\|P_k^{-1}f\|$对于合适的高斯测度的可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial estimates for solutions of parametric elliptic equations on complete manifolds
"Let $P : \CI(M; E) \to \CI(M; F)$ be an order $\mu$ differential operator with coefficients $a$ and $P_k := P : H^{s_0 + k +\mu}(M; E) \to H^{s_0 + k}(M; F)$. We prove polynomial norm estimates for the solution $P_0^{-1}f$ of the form $$\|P_0^{-1}f\|_{H^{s_0 + k + \mu}(M; E)} \le C \sum_{q=0}^{k} \, \| P_0^{-1} \|^{q+1} \,\|a \|_{W^{|s_0|+k}}^{q} \, \| f \|_{H^{s_0 + k - q}},$$ (thus in higher order Sobolev spaces, which amounts also to a parametric regularity result). The assumptions are that $E, F \to M$ are Hermitian vector bundles and that $M$ is a complete manifold satisfying the Fr\'echet Finiteness Condition (FFC), which was introduced in (Kohr and Nistor, Annals of Global Analysis and Geometry, 2022). These estimates are useful for uncertainty quantification, since the coefficient $a$ can be regarded as a vector valued random variable. We use these results to prove integrability of the norm $\|P_k^{-1}f\|$ of the solution of $P_k u = f$ with respect to suitable Gaussian measures."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信