基于领域知识集成的鲁棒聚类视频摘要

D. Farin, W. Effelsberg, P. D. With
{"title":"基于领域知识集成的鲁棒聚类视频摘要","authors":"D. Farin, W. Effelsberg, P. D. With","doi":"10.1109/ICME.2002.1035725","DOIUrl":null,"url":null,"abstract":"Clustering techniques have been widely used in automatic video-summarization applications to group shots with comparable content. We enhance the popular k-means clustering algorithm to integrate user-supplied domain-knowledge into the cluster generation step. This provides a convenient way to exclude scenes from the summary which are a-priori known to be irrelevant. Furthermore, we added an additional, time-constrained clustering step preceding the scene clustering step to exclude short ranges with transitional content. This makes the algorithm robust to fading and wipe-effects in the input without requiring explicit cut detection.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"5 1","pages":"89-92 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Robust clustering-based video-summarization with integration of domain-knowledge\",\"authors\":\"D. Farin, W. Effelsberg, P. D. With\",\"doi\":\"10.1109/ICME.2002.1035725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering techniques have been widely used in automatic video-summarization applications to group shots with comparable content. We enhance the popular k-means clustering algorithm to integrate user-supplied domain-knowledge into the cluster generation step. This provides a convenient way to exclude scenes from the summary which are a-priori known to be irrelevant. Furthermore, we added an additional, time-constrained clustering step preceding the scene clustering step to exclude short ranges with transitional content. This makes the algorithm robust to fading and wipe-effects in the input without requiring explicit cut detection.\",\"PeriodicalId\":90694,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"volume\":\"5 1\",\"pages\":\"89-92 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2002.1035725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

聚类技术已广泛应用于自动视频摘要应用中,对具有可比性内容的镜头进行分组。我们改进了流行的k-means聚类算法,将用户提供的领域知识集成到聚类生成步骤中。这提供了一种方便的方法,从总结中排除先验已知不相关的场景。此外,我们在场景聚类步骤之前添加了一个额外的、时间约束的聚类步骤,以排除具有过渡内容的短范围。这使得该算法对输入中的衰落和擦除效果具有鲁棒性,而不需要显式的切割检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust clustering-based video-summarization with integration of domain-knowledge
Clustering techniques have been widely used in automatic video-summarization applications to group shots with comparable content. We enhance the popular k-means clustering algorithm to integrate user-supplied domain-knowledge into the cluster generation step. This provides a convenient way to exclude scenes from the summary which are a-priori known to be irrelevant. Furthermore, we added an additional, time-constrained clustering step preceding the scene clustering step to exclude short ranges with transitional content. This makes the algorithm robust to fading and wipe-effects in the input without requiring explicit cut detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信