{"title":"关于子流形几乎为埃塔-里奇-布吉尼翁孤子的注释","authors":"A. Blaga, Cihan Ozgur","doi":"10.22190/fumi220318027b","DOIUrl":null,"url":null,"abstract":"We give some characterizations for submanifolds admitting almost $\\eta$-Ricci-Bourguignon solitons whose potential vector field is the tangential component of a concurrent vector field on the ambient manifold. We describe the particular cases of umbilical submanifolds and of hypersurfaces in a space with constant curvature.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REMARKS ON SUBMANIFOLDS AS ALMOST eta-RICCI-BOURGUIGNON SOLITONS\",\"authors\":\"A. Blaga, Cihan Ozgur\",\"doi\":\"10.22190/fumi220318027b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give some characterizations for submanifolds admitting almost $\\\\eta$-Ricci-Bourguignon solitons whose potential vector field is the tangential component of a concurrent vector field on the ambient manifold. We describe the particular cases of umbilical submanifolds and of hypersurfaces in a space with constant curvature.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi220318027b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi220318027b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
REMARKS ON SUBMANIFOLDS AS ALMOST eta-RICCI-BOURGUIGNON SOLITONS
We give some characterizations for submanifolds admitting almost $\eta$-Ricci-Bourguignon solitons whose potential vector field is the tangential component of a concurrent vector field on the ambient manifold. We describe the particular cases of umbilical submanifolds and of hypersurfaces in a space with constant curvature.