{"title":"Lasso估计对自举的有效性","authors":"Lorenzo Camponovo","doi":"10.2139/ssrn.2443728","DOIUrl":null,"url":null,"abstract":"We study the validity of the pairs bootstrap for lasso estimators in linear regression models with random covariates and heteroscedastic error terms. We show that the naive pairs bootstrap does not provide a valid method for approximating the distribution of the lasso estimator. To overcome this deficiency, we introduce a modified pairs bootstrap procedure and prove its consistency. Finally, we consider the adaptive lasso and show that the modified pairs bootstrap consistently estimates the distribution of the adaptive lasso estimator.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"On the Validity of the Pairs Bootstrap for Lasso Estimators\",\"authors\":\"Lorenzo Camponovo\",\"doi\":\"10.2139/ssrn.2443728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the validity of the pairs bootstrap for lasso estimators in linear regression models with random covariates and heteroscedastic error terms. We show that the naive pairs bootstrap does not provide a valid method for approximating the distribution of the lasso estimator. To overcome this deficiency, we introduce a modified pairs bootstrap procedure and prove its consistency. Finally, we consider the adaptive lasso and show that the modified pairs bootstrap consistently estimates the distribution of the adaptive lasso estimator.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2443728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2443728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Validity of the Pairs Bootstrap for Lasso Estimators
We study the validity of the pairs bootstrap for lasso estimators in linear regression models with random covariates and heteroscedastic error terms. We show that the naive pairs bootstrap does not provide a valid method for approximating the distribution of the lasso estimator. To overcome this deficiency, we introduce a modified pairs bootstrap procedure and prove its consistency. Finally, we consider the adaptive lasso and show that the modified pairs bootstrap consistently estimates the distribution of the adaptive lasso estimator.