广义d 'Alembert调和函数的超稳定性

IF 0.1 Q4 MATHEMATICS
Iz-iddine El-Fassi
{"title":"广义d 'Alembert调和函数的超稳定性","authors":"Iz-iddine El-Fassi","doi":"10.1515/AUPCSM-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) $$f(x + y + z) + f(x + y + \\sigma (z)) + f(x + \\sigma (y) + z) + f(\\sigma (x) + y + z) = 4f(x)f(y)f(z)$$ for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"14 1","pages":"5 - 13"},"PeriodicalIF":0.1000,"publicationDate":"2016-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the superstability of generalized d’Alembert harmonic functions\",\"authors\":\"Iz-iddine El-Fassi\",\"doi\":\"10.1515/AUPCSM-2016-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) $$f(x + y + z) + f(x + y + \\\\sigma (z)) + f(x + \\\\sigma (y) + z) + f(\\\\sigma (x) + y + z) = 4f(x)f(y)f(z)$$ for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"14 1\",\"pages\":\"5 - 13\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/AUPCSM-2016-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/AUPCSM-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了d 'Alembert型泛函方程f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) $$f(x + y + z) + f(x + y + \sigma (z)) + f(x + \sigma (y) + z) + f(\sigma (x) + y + z) = 4f(x)f(y)f(z)$$对于所有x, y, z∈G,其中G是一个阿贝尔群,σ: G→G是一个自同态,使得σ(σ(x)) = x对于未知函数f从G转化为或转化为可交换半单Banach代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the superstability of generalized d’Alembert harmonic functions
Abstract The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) $$f(x + y + z) + f(x + y + \sigma (z)) + f(x + \sigma (y) + z) + f(\sigma (x) + y + z) = 4f(x)f(y)f(z)$$ for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信