接近楔形弹性夹杂的III型裂纹

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY
Victor V. Tikhomirov
{"title":"接近楔形弹性夹杂的III型裂纹","authors":"Victor V. Tikhomirov","doi":"10.1016/j.spjpm.2017.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The problem on an antiplane semi-infinite crack approaching an elastic wedge-shaped inclusion is considered. The problem has been solved exactly using the Mellin integral transformation and the Wiener–Hopf method. The asymptotic behavior of the stress intensity factor <em>K</em><sub>III</sub> in the crack tip was studied for short distances from the crack to the inclusion vicinity. Depending on the composition parameters, the crack was shown to be stable (<em>K</em><sub>III</sub> <!-->→<!--> <!-->0) or unstable (<em>K</em><sub>III</sub> <!-->→<!--> <!-->∞). Provided that the interface has a corner point, the crack growth can be unstable (unlike the smooth interface) for some parameter values even though the crack approaches, from a soft material, a relatively harder inclusion. Alternatively, the possibility of <em>K</em><sub>III</sub> <!-->→<!--> <!-->0 exists provided the crack approaching a soft inclusion from a hard material.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.06.001","citationCount":"0","resultStr":"{\"title\":\"Mode III crack approaching the wedge-shaped elastic inclusion\",\"authors\":\"Victor V. Tikhomirov\",\"doi\":\"10.1016/j.spjpm.2017.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem on an antiplane semi-infinite crack approaching an elastic wedge-shaped inclusion is considered. The problem has been solved exactly using the Mellin integral transformation and the Wiener–Hopf method. The asymptotic behavior of the stress intensity factor <em>K</em><sub>III</sub> in the crack tip was studied for short distances from the crack to the inclusion vicinity. Depending on the composition parameters, the crack was shown to be stable (<em>K</em><sub>III</sub> <!-->→<!--> <!-->0) or unstable (<em>K</em><sub>III</sub> <!-->→<!--> <!-->∞). Provided that the interface has a corner point, the crack growth can be unstable (unlike the smooth interface) for some parameter values even though the crack approaches, from a soft material, a relatively harder inclusion. Alternatively, the possibility of <em>K</em><sub>III</sub> <!-->→<!--> <!-->0 exists provided the crack approaching a soft inclusion from a hard material.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.06.001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405722317300579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了接近弹性楔状夹杂的反平面半无限裂纹问题。利用Mellin积分变换和Wiener-Hopf方法精确地解决了这一问题。研究了裂纹尖端应力强度因子KIII在从裂纹到夹杂附近的短距离内的渐近行为。根据组成参数的不同,裂纹表现为稳定(KIII→0)或不稳定(KIII→∞)。如果界面有一个角点,那么在某些参数值下,裂纹的扩展可能是不稳定的(与光滑界面不同),即使裂纹从软材料靠近相对较硬的夹杂物。或者,如果裂纹接近硬材料的软夹杂,则存在KIII→0的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mode III crack approaching the wedge-shaped elastic inclusion

The problem on an antiplane semi-infinite crack approaching an elastic wedge-shaped inclusion is considered. The problem has been solved exactly using the Mellin integral transformation and the Wiener–Hopf method. The asymptotic behavior of the stress intensity factor KIII in the crack tip was studied for short distances from the crack to the inclusion vicinity. Depending on the composition parameters, the crack was shown to be stable (KIII  0) or unstable (KIII  ∞). Provided that the interface has a corner point, the crack growth can be unstable (unlike the smooth interface) for some parameter values even though the crack approaches, from a soft material, a relatively harder inclusion. Alternatively, the possibility of KIII  0 exists provided the crack approaching a soft inclusion from a hard material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信