稀疏平方函数的二权估计和分离凹凸猜想

S. Kakaroumpas
{"title":"稀疏平方函数的二权估计和分离凹凸猜想","authors":"S. Kakaroumpas","doi":"10.1090/tran/8524","DOIUrl":null,"url":null,"abstract":"We show that two-weight $L^2$ bounds for sparse square functions, uniformly with respect to the sparseness constant of the underlying sparse family, and in both directions, do not imply a two-weight $L^2$ bound for the Hilbert transform. We present an explicit example, making use of the construction due to Reguera--Thiele from [18]. At the same time, we show that such two-weight bounds for sparse square functions do not imply both separated Orlicz bump conditions of the involved weights for $p=2$ (and for Young functions satisfying an appropriate integrability condition). We rely on the domination of $L\\log L$ bumps by Orlicz bumps (for Young functions satisfying an appropriate integrability condition) observed by Treil--Volberg in [20].","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-weight estimates for sparse square functions and the separated bump conjecture\",\"authors\":\"S. Kakaroumpas\",\"doi\":\"10.1090/tran/8524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that two-weight $L^2$ bounds for sparse square functions, uniformly with respect to the sparseness constant of the underlying sparse family, and in both directions, do not imply a two-weight $L^2$ bound for the Hilbert transform. We present an explicit example, making use of the construction due to Reguera--Thiele from [18]. At the same time, we show that such two-weight bounds for sparse square functions do not imply both separated Orlicz bump conditions of the involved weights for $p=2$ (and for Young functions satisfying an appropriate integrability condition). We rely on the domination of $L\\\\log L$ bumps by Orlicz bumps (for Young functions satisfying an appropriate integrability condition) observed by Treil--Volberg in [20].\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了稀疏平方函数的二权$L^2$界,一致地关于底层稀疏族的稀疏常数,在两个方向上,并不意味着希尔伯特变换的二权$L^2$界。我们给出一个明确的例子,利用[18]中的Reguera- Thiele的结构。同时,我们证明了稀疏平方函数的这种双权限并不意味着对于p=2$(以及对于满足适当可积条件的Young函数)所涉及的权值的两个分离的Orlicz凹凸条件。我们依靠Treil—Volberg在[20]中观察到的Orlicz凸点(对于满足适当可积条件的Young函数)对$L\log L$凸点的支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-weight estimates for sparse square functions and the separated bump conjecture
We show that two-weight $L^2$ bounds for sparse square functions, uniformly with respect to the sparseness constant of the underlying sparse family, and in both directions, do not imply a two-weight $L^2$ bound for the Hilbert transform. We present an explicit example, making use of the construction due to Reguera--Thiele from [18]. At the same time, we show that such two-weight bounds for sparse square functions do not imply both separated Orlicz bump conditions of the involved weights for $p=2$ (and for Young functions satisfying an appropriate integrability condition). We rely on the domination of $L\log L$ bumps by Orlicz bumps (for Young functions satisfying an appropriate integrability condition) observed by Treil--Volberg in [20].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信