M. Barczewski, Magdalena Zdanowicz, O. Mysiukiewicz, M. Dobrzyńska‐Mizera, B. Dudziec
{"title":"四硅氧基硅氧烷对山梨醇衍生物成核聚丙烯薄膜性能的影响","authors":"M. Barczewski, Magdalena Zdanowicz, O. Mysiukiewicz, M. Dobrzyńska‐Mizera, B. Dudziec","doi":"10.1080/14658011.2023.2167159","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nucleating agents cause an increase in crystallization temperature, making the production of highly oriented films much more difficult. In this study, a nucleating system composed of 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) and tetrasilanolphenyl silsesquioxane (phPOSS) was used to modify isotactic polypropylene (iPP). Oriented films characterised by different draw drown ratios (4.8, 9.7, 14.5) were prepared and analysed. Their mechanical properties, coefficient of friction, thermal properties, and structure as well as optical properties such as gloss, haze, and transparency, were also determined. The macromolecular orientation of films was tested by polarised light Fourier transform infrared spectroscopy. The proposed nucleating system provides films with superior mechanical and optical properties, which are accompanied by high orientation ability. The application of DMDBS and phPOSS allowed a 26% increase in penetration load at break and Young modulus by 70% compared to iPP. It can be assumed that DMDBS/phPOSS system is an efficient modifier for polypropylene film production.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"30 1","pages":"204 - 215"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of tetrasilanolphenyl silsesquioxane on properties of sorbitol derivative-nucleated polypropylene cast films\",\"authors\":\"M. Barczewski, Magdalena Zdanowicz, O. Mysiukiewicz, M. Dobrzyńska‐Mizera, B. Dudziec\",\"doi\":\"10.1080/14658011.2023.2167159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Nucleating agents cause an increase in crystallization temperature, making the production of highly oriented films much more difficult. In this study, a nucleating system composed of 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) and tetrasilanolphenyl silsesquioxane (phPOSS) was used to modify isotactic polypropylene (iPP). Oriented films characterised by different draw drown ratios (4.8, 9.7, 14.5) were prepared and analysed. Their mechanical properties, coefficient of friction, thermal properties, and structure as well as optical properties such as gloss, haze, and transparency, were also determined. The macromolecular orientation of films was tested by polarised light Fourier transform infrared spectroscopy. The proposed nucleating system provides films with superior mechanical and optical properties, which are accompanied by high orientation ability. The application of DMDBS and phPOSS allowed a 26% increase in penetration load at break and Young modulus by 70% compared to iPP. It can be assumed that DMDBS/phPOSS system is an efficient modifier for polypropylene film production.\",\"PeriodicalId\":20245,\"journal\":{\"name\":\"Plastics, Rubber and Composites\",\"volume\":\"30 1\",\"pages\":\"204 - 215\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plastics, Rubber and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14658011.2023.2167159\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2023.2167159","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of tetrasilanolphenyl silsesquioxane on properties of sorbitol derivative-nucleated polypropylene cast films
ABSTRACT Nucleating agents cause an increase in crystallization temperature, making the production of highly oriented films much more difficult. In this study, a nucleating system composed of 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) and tetrasilanolphenyl silsesquioxane (phPOSS) was used to modify isotactic polypropylene (iPP). Oriented films characterised by different draw drown ratios (4.8, 9.7, 14.5) were prepared and analysed. Their mechanical properties, coefficient of friction, thermal properties, and structure as well as optical properties such as gloss, haze, and transparency, were also determined. The macromolecular orientation of films was tested by polarised light Fourier transform infrared spectroscopy. The proposed nucleating system provides films with superior mechanical and optical properties, which are accompanied by high orientation ability. The application of DMDBS and phPOSS allowed a 26% increase in penetration load at break and Young modulus by 70% compared to iPP. It can be assumed that DMDBS/phPOSS system is an efficient modifier for polypropylene film production.
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.