{"title":"H(旋度)椭圆问题非标准有限元近似后验误差分析的统一框架","authors":"C. Carstensen, R. Hoppe","doi":"10.1515/JNUM.2009.003","DOIUrl":null,"url":null,"abstract":"Abstract A unified framework for a residual-based a posteriori error analysis of standard conforming finite element methods as well as non-standard techniques such as nonconforming and mixed methods has been developed in [Carstensen, Numer. Math. 100: 617 – 637, 2005, Carstensen, Gudi, and Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Department of Mathematics, Humboldt University of Berlin, 2008, Carstensen and Hoppe, J. Numer. Math. 13: 19 – 32, 2005, Carstensen and Hu, Numer. Math. 107: 473 – 502, 2007, Carstensen, Hu, and Orlando, SIAM J. Numer. Anal. 45: 68 – 82, 2007]. This paper provides such a framework for an a posteriori error control of nonconforming finite element discretizations of H(curl)-elliptic problems as they arise from low-frequency electromagnetics. These nonconforming approximations include the interior penalty discontinuous Galerkin (IPDG) approach considered in [Houston, Perugia, and Schötzau, SIAM J. Numer. Anal. 42: 434 – 459, 2004, Houston, Perugia, and Schötzau, IMA J. Numer. Anal. 27: 122 – 150, 2007], and mortar edge element approximations studied in [Belgacem, Buffa, and Maday, SIAM J. Numer. Anal. 39: 880 – 901, 2001, Hoppe, East-West J. Numer. Math. 7: 159 – 173, 1999, Hoppe, Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems: Springer, 2002, Hoppe, J. Comp. Appl. Math. 168: 245 – 254, 2004, Hoppe, Contemporary Math. 383, 63 – 111, 2005, Rapetti, Buffa, Maday, and Bouillault, COMPEL 19: 332 – 340, 2000, Xu and Hoppe, SIAM J. Numer. Anal. 43: 1276 – 1294, 2005].","PeriodicalId":89936,"journal":{"name":"International Conference on Electromagnetics in Advanced Applications : proceedings : ICEAA. International Conference on Electromagnetics in Advanced Applications","volume":"182 1","pages":"27 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems\",\"authors\":\"C. Carstensen, R. Hoppe\",\"doi\":\"10.1515/JNUM.2009.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A unified framework for a residual-based a posteriori error analysis of standard conforming finite element methods as well as non-standard techniques such as nonconforming and mixed methods has been developed in [Carstensen, Numer. Math. 100: 617 – 637, 2005, Carstensen, Gudi, and Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Department of Mathematics, Humboldt University of Berlin, 2008, Carstensen and Hoppe, J. Numer. Math. 13: 19 – 32, 2005, Carstensen and Hu, Numer. Math. 107: 473 – 502, 2007, Carstensen, Hu, and Orlando, SIAM J. Numer. Anal. 45: 68 – 82, 2007]. This paper provides such a framework for an a posteriori error control of nonconforming finite element discretizations of H(curl)-elliptic problems as they arise from low-frequency electromagnetics. These nonconforming approximations include the interior penalty discontinuous Galerkin (IPDG) approach considered in [Houston, Perugia, and Schötzau, SIAM J. Numer. Anal. 42: 434 – 459, 2004, Houston, Perugia, and Schötzau, IMA J. Numer. Anal. 27: 122 – 150, 2007], and mortar edge element approximations studied in [Belgacem, Buffa, and Maday, SIAM J. Numer. Anal. 39: 880 – 901, 2001, Hoppe, East-West J. Numer. Math. 7: 159 – 173, 1999, Hoppe, Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems: Springer, 2002, Hoppe, J. Comp. Appl. Math. 168: 245 – 254, 2004, Hoppe, Contemporary Math. 383, 63 – 111, 2005, Rapetti, Buffa, Maday, and Bouillault, COMPEL 19: 332 – 340, 2000, Xu and Hoppe, SIAM J. Numer. Anal. 43: 1276 – 1294, 2005].\",\"PeriodicalId\":89936,\"journal\":{\"name\":\"International Conference on Electromagnetics in Advanced Applications : proceedings : ICEAA. International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"182 1\",\"pages\":\"27 - 44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electromagnetics in Advanced Applications : proceedings : ICEAA. International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/JNUM.2009.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electromagnetics in Advanced Applications : proceedings : ICEAA. International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JNUM.2009.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems
Abstract A unified framework for a residual-based a posteriori error analysis of standard conforming finite element methods as well as non-standard techniques such as nonconforming and mixed methods has been developed in [Carstensen, Numer. Math. 100: 617 – 637, 2005, Carstensen, Gudi, and Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Department of Mathematics, Humboldt University of Berlin, 2008, Carstensen and Hoppe, J. Numer. Math. 13: 19 – 32, 2005, Carstensen and Hu, Numer. Math. 107: 473 – 502, 2007, Carstensen, Hu, and Orlando, SIAM J. Numer. Anal. 45: 68 – 82, 2007]. This paper provides such a framework for an a posteriori error control of nonconforming finite element discretizations of H(curl)-elliptic problems as they arise from low-frequency electromagnetics. These nonconforming approximations include the interior penalty discontinuous Galerkin (IPDG) approach considered in [Houston, Perugia, and Schötzau, SIAM J. Numer. Anal. 42: 434 – 459, 2004, Houston, Perugia, and Schötzau, IMA J. Numer. Anal. 27: 122 – 150, 2007], and mortar edge element approximations studied in [Belgacem, Buffa, and Maday, SIAM J. Numer. Anal. 39: 880 – 901, 2001, Hoppe, East-West J. Numer. Math. 7: 159 – 173, 1999, Hoppe, Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems: Springer, 2002, Hoppe, J. Comp. Appl. Math. 168: 245 – 254, 2004, Hoppe, Contemporary Math. 383, 63 – 111, 2005, Rapetti, Buffa, Maday, and Bouillault, COMPEL 19: 332 – 340, 2000, Xu and Hoppe, SIAM J. Numer. Anal. 43: 1276 – 1294, 2005].