用于多核平台调度器的特定应用程序量子

Boris Teabe, A. Tchana, D. Hagimont
{"title":"用于多核平台调度器的特定应用程序量子","authors":"Boris Teabe, A. Tchana, D. Hagimont","doi":"10.1145/2901318.2901340","DOIUrl":null,"url":null,"abstract":"Scheduling has a significant influence on application performance. Deciding on a quantum length can be very tricky, especially when concurrent applications have various characteristics. This is actually the case in virtualized cloud computing environments where virtual machines from different users are colocated on the same physical machine. We claim that in a multi-core virtualized platform, different quantum lengths should be associated with different application types. We apply this principle in a new scheduler called AQL_Sched. We identified 5 main application types and experimentally found the best quantum length for each of them. Dynamically, AQL_Sched associates an application type with each virtual CPU (vCPU) and schedules vCPUs according to their type on physical CPU (pCPU) pools with the best quantum length. Therefore, each vCPU is scheduled on a pCPU with the best quantum length. We implemented a prototype of AQL_Sched in Xen and we evaluated it with various reference benchmarks (SPECweb2009, SPECmail2009, SPEC CPU2006, and PARSEC). The evaluation results show that AQL_Sched outperforms Xen's credit scheduler. For instance, up to 20%, 10% and 15% of performance improvements have been obtained with SPECweb2009, SPEC CPU2006 and PARSEC, respectively.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Application-specific quantum for multi-core platform scheduler\",\"authors\":\"Boris Teabe, A. Tchana, D. Hagimont\",\"doi\":\"10.1145/2901318.2901340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling has a significant influence on application performance. Deciding on a quantum length can be very tricky, especially when concurrent applications have various characteristics. This is actually the case in virtualized cloud computing environments where virtual machines from different users are colocated on the same physical machine. We claim that in a multi-core virtualized platform, different quantum lengths should be associated with different application types. We apply this principle in a new scheduler called AQL_Sched. We identified 5 main application types and experimentally found the best quantum length for each of them. Dynamically, AQL_Sched associates an application type with each virtual CPU (vCPU) and schedules vCPUs according to their type on physical CPU (pCPU) pools with the best quantum length. Therefore, each vCPU is scheduled on a pCPU with the best quantum length. We implemented a prototype of AQL_Sched in Xen and we evaluated it with various reference benchmarks (SPECweb2009, SPECmail2009, SPEC CPU2006, and PARSEC). The evaluation results show that AQL_Sched outperforms Xen's credit scheduler. For instance, up to 20%, 10% and 15% of performance improvements have been obtained with SPECweb2009, SPEC CPU2006 and PARSEC, respectively.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901318.2901340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

调度对应用程序的性能影响很大。确定量子长度可能非常棘手,特别是当并发应用程序具有各种特征时。这实际上是虚拟化云计算环境中的情况,其中来自不同用户的虚拟机位于同一物理机器上。我们认为,在多核虚拟化平台中,不同的量子长度应该与不同的应用程序类型相关联。我们在名为AQL_Sched的新调度器中应用了这一原则。我们确定了5种主要的应用类型,并通过实验找到了每种应用类型的最佳量子长度。AQL_Sched动态地将应用程序类型与每个虚拟CPU (vCPU)关联,并根据其类型在最佳量子长度的物理CPU (pCPU)池上调度vCPU。因此,每个vCPU被调度到一个量子长度最佳的pCPU上。我们在Xen中实现了AQL_Sched的原型,并使用各种参考基准(SPECweb2009、SPECmail2009、SPEC CPU2006和PARSEC)对其进行了评估。评估结果表明,aql_scheed优于Xen的信用调度程序。例如,SPECweb2009、SPEC CPU2006和PARSEC分别获得了高达20%、10%和15%的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application-specific quantum for multi-core platform scheduler
Scheduling has a significant influence on application performance. Deciding on a quantum length can be very tricky, especially when concurrent applications have various characteristics. This is actually the case in virtualized cloud computing environments where virtual machines from different users are colocated on the same physical machine. We claim that in a multi-core virtualized platform, different quantum lengths should be associated with different application types. We apply this principle in a new scheduler called AQL_Sched. We identified 5 main application types and experimentally found the best quantum length for each of them. Dynamically, AQL_Sched associates an application type with each virtual CPU (vCPU) and schedules vCPUs according to their type on physical CPU (pCPU) pools with the best quantum length. Therefore, each vCPU is scheduled on a pCPU with the best quantum length. We implemented a prototype of AQL_Sched in Xen and we evaluated it with various reference benchmarks (SPECweb2009, SPECmail2009, SPEC CPU2006, and PARSEC). The evaluation results show that AQL_Sched outperforms Xen's credit scheduler. For instance, up to 20%, 10% and 15% of performance improvements have been obtained with SPECweb2009, SPEC CPU2006 and PARSEC, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信