结合多模态特征的融合网络用于野外情绪识别

Bo Sun, Liandong Li, Guoyan Zhou, Xuewen Wu, Jun He, Lejun Yu, Dongxue Li, Qinglan Wei
{"title":"结合多模态特征的融合网络用于野外情绪识别","authors":"Bo Sun, Liandong Li, Guoyan Zhou, Xuewen Wu, Jun He, Lejun Yu, Dongxue Li, Qinglan Wei","doi":"10.1145/2818346.2830586","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our work in the third Emotion Recognition in the Wild (EmotiW 2015) Challenge. For each video clip, we extract MSDF, LBP-TOP, HOG, LPQ-TOP and acoustic features to recognize the emotions of film characters. For the static facial expression recognition based on video frame, we extract MSDF, DCNN and RCNN features. We train linear SVM classifiers for these kinds of features on the AFEW and SFEW dataset, and we propose a novel fusion network to combine all the extracted features at decision level. The final achievement we gained is 51.02% on the AFEW testing set and 51.08% on the SFEW testing set, which are much better than the baseline recognition rate of 39.33% and 39.13%.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"287 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Combining Multimodal Features within a Fusion Network for Emotion Recognition in the Wild\",\"authors\":\"Bo Sun, Liandong Li, Guoyan Zhou, Xuewen Wu, Jun He, Lejun Yu, Dongxue Li, Qinglan Wei\",\"doi\":\"10.1145/2818346.2830586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our work in the third Emotion Recognition in the Wild (EmotiW 2015) Challenge. For each video clip, we extract MSDF, LBP-TOP, HOG, LPQ-TOP and acoustic features to recognize the emotions of film characters. For the static facial expression recognition based on video frame, we extract MSDF, DCNN and RCNN features. We train linear SVM classifiers for these kinds of features on the AFEW and SFEW dataset, and we propose a novel fusion network to combine all the extracted features at decision level. The final achievement we gained is 51.02% on the AFEW testing set and 51.08% on the SFEW testing set, which are much better than the baseline recognition rate of 39.33% and 39.13%.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"287 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2830586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2830586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

在本文中,我们描述了我们在第三届野外情绪识别挑战赛(EmotiW 2015)中的工作。对于每个视频片段,我们提取MSDF、LBP-TOP、HOG、LPQ-TOP和声学特征来识别电影人物的情绪。对于基于视频帧的静态面部表情识别,我们提取了MSDF、DCNN和RCNN特征。我们在few和SFEW数据集上对这些类型的特征训练线性支持向量机分类器,并提出了一种新的融合网络,将提取的所有特征结合在决策层。最终我们在few测试集上的识别率为51.02%,在SFEW测试集上的识别率为51.08%,大大优于基线的39.33%和39.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Multimodal Features within a Fusion Network for Emotion Recognition in the Wild
In this paper, we describe our work in the third Emotion Recognition in the Wild (EmotiW 2015) Challenge. For each video clip, we extract MSDF, LBP-TOP, HOG, LPQ-TOP and acoustic features to recognize the emotions of film characters. For the static facial expression recognition based on video frame, we extract MSDF, DCNN and RCNN features. We train linear SVM classifiers for these kinds of features on the AFEW and SFEW dataset, and we propose a novel fusion network to combine all the extracted features at decision level. The final achievement we gained is 51.02% on the AFEW testing set and 51.08% on the SFEW testing set, which are much better than the baseline recognition rate of 39.33% and 39.13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信