Francis Bassono, Rasmané Yaro, J. B. Yindoula, Gires Dimitri Nkaya, Gabriel Bissanga
{"title":"关于一些非线性偏积分微分方程的精确解","authors":"Francis Bassono, Rasmané Yaro, J. B. Yindoula, Gires Dimitri Nkaya, Gabriel Bissanga","doi":"10.11648/J.ACM.20211001.13","DOIUrl":null,"url":null,"abstract":"Data on solving of nonlinear integro-differential equations using Laplace-SBA method are scarce. The objective of this paper is to determine exact solution of nonlinear 2 dimensionnal Voltera-Fredholm differential equation by this method. First, SBA method and Laplace SBA method are described. Second, three nonlinear Voolterra-Fredholm integro-differential equations are solved using each method. Application of each method give an exact solution. However, application of Laplace-SBA method permits for solve integro-differential equation compared with SBA method. This proves that this last method can be fruitfully applied in the resolution of integro-differential equations.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About Exact Solution of Some Non Linear Partial Integro-differential Equations\",\"authors\":\"Francis Bassono, Rasmané Yaro, J. B. Yindoula, Gires Dimitri Nkaya, Gabriel Bissanga\",\"doi\":\"10.11648/J.ACM.20211001.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data on solving of nonlinear integro-differential equations using Laplace-SBA method are scarce. The objective of this paper is to determine exact solution of nonlinear 2 dimensionnal Voltera-Fredholm differential equation by this method. First, SBA method and Laplace SBA method are described. Second, three nonlinear Voolterra-Fredholm integro-differential equations are solved using each method. Application of each method give an exact solution. However, application of Laplace-SBA method permits for solve integro-differential equation compared with SBA method. This proves that this last method can be fruitfully applied in the resolution of integro-differential equations.\",\"PeriodicalId\":55503,\"journal\":{\"name\":\"Applied and Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11648/J.ACM.20211001.13\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/J.ACM.20211001.13","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
About Exact Solution of Some Non Linear Partial Integro-differential Equations
Data on solving of nonlinear integro-differential equations using Laplace-SBA method are scarce. The objective of this paper is to determine exact solution of nonlinear 2 dimensionnal Voltera-Fredholm differential equation by this method. First, SBA method and Laplace SBA method are described. Second, three nonlinear Voolterra-Fredholm integro-differential equations are solved using each method. Application of each method give an exact solution. However, application of Laplace-SBA method permits for solve integro-differential equation compared with SBA method. This proves that this last method can be fruitfully applied in the resolution of integro-differential equations.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.