{"title":"铃木代数I上的有限维Nichols代数:的简单yeter - drinfeld模 $A_{N\\,2n}^{\\mu\\lambda}$","authors":"Yuxing Shi","doi":"10.36045/j.bbms.211101","DOIUrl":null,"url":null,"abstract":"The Suzuki algebra $A_{Nn}^{\\mu \\lambda}$ was introduced by Suzuki Satoshi in 1998, which is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra $A_{N\\,2n}^{\\mu\\lambda}$ and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type $A_1$, $A_1\\times A_1$, $A_2$, $A_2\\times A_2$, Super type ${\\bf A}_{2}(q;I_2)$ and the Nichols algebra ufo(8). There are $64$, $4m$ and $m^2$-dimensional Nichols algebras of non-diagonal type over $A_{N\\,2n}^{\\mu \\lambda}$. The $64$-dimensional Nichols algebras are of dihedral rack type $\\Bbb{D}_4$. The $4m$ and $m^2$-dimensional Nichols algebras $\\mathfrak{B}(V_{abe})$ discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over $A_{Nn}^{\\mu \\lambda}$. By using a result of Masuoka, we prove that $\\dim\\mathfrak{B}(V_{abe})=\\infty$ under the condition $b^2=(ae)^{-1}$, $b\\in\\Bbb{G}_{m}$ for $m\\geq 5$.","PeriodicalId":55309,"journal":{"name":"Bulletin of the Belgian Mathematical Society-Simon Stevin","volume":"38 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite-dimensional Nichols algebras over the Suzuki algebras I: simple Yetter-Drinfeld modules of $A_{N\\\\,2n}^{\\\\mu\\\\lambda}$\",\"authors\":\"Yuxing Shi\",\"doi\":\"10.36045/j.bbms.211101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Suzuki algebra $A_{Nn}^{\\\\mu \\\\lambda}$ was introduced by Suzuki Satoshi in 1998, which is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra $A_{N\\\\,2n}^{\\\\mu\\\\lambda}$ and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type $A_1$, $A_1\\\\times A_1$, $A_2$, $A_2\\\\times A_2$, Super type ${\\\\bf A}_{2}(q;I_2)$ and the Nichols algebra ufo(8). There are $64$, $4m$ and $m^2$-dimensional Nichols algebras of non-diagonal type over $A_{N\\\\,2n}^{\\\\mu \\\\lambda}$. The $64$-dimensional Nichols algebras are of dihedral rack type $\\\\Bbb{D}_4$. The $4m$ and $m^2$-dimensional Nichols algebras $\\\\mathfrak{B}(V_{abe})$ discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over $A_{Nn}^{\\\\mu \\\\lambda}$. By using a result of Masuoka, we prove that $\\\\dim\\\\mathfrak{B}(V_{abe})=\\\\infty$ under the condition $b^2=(ae)^{-1}$, $b\\\\in\\\\Bbb{G}_{m}$ for $m\\\\geq 5$.\",\"PeriodicalId\":55309,\"journal\":{\"name\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.211101\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Belgian Mathematical Society-Simon Stevin","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.211101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finite-dimensional Nichols algebras over the Suzuki algebras I: simple Yetter-Drinfeld modules of $A_{N\,2n}^{\mu\lambda}$
The Suzuki algebra $A_{Nn}^{\mu \lambda}$ was introduced by Suzuki Satoshi in 1998, which is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra $A_{N\,2n}^{\mu\lambda}$ and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type $A_1$, $A_1\times A_1$, $A_2$, $A_2\times A_2$, Super type ${\bf A}_{2}(q;I_2)$ and the Nichols algebra ufo(8). There are $64$, $4m$ and $m^2$-dimensional Nichols algebras of non-diagonal type over $A_{N\,2n}^{\mu \lambda}$. The $64$-dimensional Nichols algebras are of dihedral rack type $\Bbb{D}_4$. The $4m$ and $m^2$-dimensional Nichols algebras $\mathfrak{B}(V_{abe})$ discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over $A_{Nn}^{\mu \lambda}$. By using a result of Masuoka, we prove that $\dim\mathfrak{B}(V_{abe})=\infty$ under the condition $b^2=(ae)^{-1}$, $b\in\Bbb{G}_{m}$ for $m\geq 5$.
期刊介绍:
The Bulletin of the Belgian Mathematical Society - Simon Stevin (BBMS) is a peer-reviewed journal devoted to recent developments in all areas in pure and applied mathematics. It is published as one yearly volume, containing five issues.
The main focus lies on high level original research papers. They should aim to a broader mathematical audience in the sense that a well-written introduction is attractive to mathematicians outside the circle of experts in the subject, bringing motivation, background information, history and philosophy. The content has to be substantial enough: short one-small-result papers will not be taken into account in general, unless there are some particular arguments motivating publication, like an original point of view, a new short proof of a famous result etc.
The BBMS also publishes expository papers that bring the state of the art of a current mainstream topic in mathematics. Here it is even more important that at leat a substantial part of the paper is accessible to a broader audience of mathematicians.
The BBMS publishes papers in English, Dutch, French and German. All papers should have an abstract in English.