{"title":"模块化本体建模","authors":"C. Shimizu, K. Hammar, P. Hitzler","doi":"10.3233/sw-222886","DOIUrl":null,"url":null,"abstract":"Reusing ontologies for new purposes, or adapting them to new use-cases, is frequently difficult. In our experiences, we have found this to be the case for several reasons: (i) differing representational granularity in ontologies and in use-cases, (ii) lacking conceptual clarity in potentially reusable ontologies, (iii) lack and difficulty of adherence to good modeling principles, and (iv) a lack of reuse emphasis and process support available in ontology engineering tooling. In order to address these concerns, we have developed the Modular Ontology Modeling (MOMo) methodology, and its supporting tooling infrastructure, CoModIDE (the Comprehensive Modular Ontology IDE – “commodity”). MOMo builds on the established eXtreme Design methodology, and like it emphasizes modular development and design pattern reuse; but crucially adds the extensive use of graphical schema diagrams, and tooling that support them, as vehicles for knowledge elicitation from experts. In this paper, we present the MOMo workflow in detail, and describe several useful resources for executing it. In particular, we provide a thorough and rigorous evaluation of CoModIDE in its role of supporting the MOMo methodology’s graphical modeling paradigm. We find that CoModIDE significantly improves approachability of such a paradigm, and that it displays a high usability.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"24 1","pages":"459-489"},"PeriodicalIF":3.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Modular ontology modeling\",\"authors\":\"C. Shimizu, K. Hammar, P. Hitzler\",\"doi\":\"10.3233/sw-222886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reusing ontologies for new purposes, or adapting them to new use-cases, is frequently difficult. In our experiences, we have found this to be the case for several reasons: (i) differing representational granularity in ontologies and in use-cases, (ii) lacking conceptual clarity in potentially reusable ontologies, (iii) lack and difficulty of adherence to good modeling principles, and (iv) a lack of reuse emphasis and process support available in ontology engineering tooling. In order to address these concerns, we have developed the Modular Ontology Modeling (MOMo) methodology, and its supporting tooling infrastructure, CoModIDE (the Comprehensive Modular Ontology IDE – “commodity”). MOMo builds on the established eXtreme Design methodology, and like it emphasizes modular development and design pattern reuse; but crucially adds the extensive use of graphical schema diagrams, and tooling that support them, as vehicles for knowledge elicitation from experts. In this paper, we present the MOMo workflow in detail, and describe several useful resources for executing it. In particular, we provide a thorough and rigorous evaluation of CoModIDE in its role of supporting the MOMo methodology’s graphical modeling paradigm. We find that CoModIDE significantly improves approachability of such a paradigm, and that it displays a high usability.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"24 1\",\"pages\":\"459-489\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-222886\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-222886","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Reusing ontologies for new purposes, or adapting them to new use-cases, is frequently difficult. In our experiences, we have found this to be the case for several reasons: (i) differing representational granularity in ontologies and in use-cases, (ii) lacking conceptual clarity in potentially reusable ontologies, (iii) lack and difficulty of adherence to good modeling principles, and (iv) a lack of reuse emphasis and process support available in ontology engineering tooling. In order to address these concerns, we have developed the Modular Ontology Modeling (MOMo) methodology, and its supporting tooling infrastructure, CoModIDE (the Comprehensive Modular Ontology IDE – “commodity”). MOMo builds on the established eXtreme Design methodology, and like it emphasizes modular development and design pattern reuse; but crucially adds the extensive use of graphical schema diagrams, and tooling that support them, as vehicles for knowledge elicitation from experts. In this paper, we present the MOMo workflow in detail, and describe several useful resources for executing it. In particular, we provide a thorough and rigorous evaluation of CoModIDE in its role of supporting the MOMo methodology’s graphical modeling paradigm. We find that CoModIDE significantly improves approachability of such a paradigm, and that it displays a high usability.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.