高维时间序列块相关矩阵特征值分布的渐近性

Pub Date : 2021-10-22 DOI:10.1142/s2010326322500241
P. Loubaton, X. Mestre
{"title":"高维时间序列块相关矩阵特征值分布的渐近性","authors":"P. Loubaton, X. Mestre","doi":"10.1142/s2010326322500241","DOIUrl":null,"url":null,"abstract":"We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of high-dimensional time series\",\"authors\":\"P. Loubaton, X. Mestre\",\"doi\":\"10.1142/s2010326322500241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑从一组[公式:见文本]相互独立的标量时间序列的块归一化相关矩阵建立的线性谱统计。这个矩阵由[公式:见文本]块组成。每个块具有大小[公式:见文本],并且包含在[公式:见文本]处测量的样本相互关系,每对时间序列之间的连续时间滞后。令[公式:见文]表示用于估计这些相关矩阵的连续观测窗口的总数。我们分析了[公式:见文]而[公式:见文],[公式:见文]的渐近状态。在这些渐近条件下,研究了该块相关矩阵的特征值的线性统计性质,并证明了经验特征值分布收敛于Marcenko-Pastur分布。我们的结果对于解决测试大量时间序列是否不相关的问题是潜在的有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of high-dimensional time series
We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信