{"title":"用于内容标识的基于模型的解码度量","authors":"R. Naini, P. Moulin","doi":"10.1109/ICASSP.2012.6288257","DOIUrl":null,"url":null,"abstract":"In this paper, decoding metrics are designed for statistical fingerprint-based content identification. A fairly general class of structured codes is considered, and a statistical model for the resulting fingerprints and their degraded versions (following miscellaneous content distortions) is proposed and validated. The Maximum-Likelihood fingerprint decoder derived from this model is shown to considerably improve upon previous decoders based on the Hamming metric. A GLRT test is also proposed and evaluated to deal with unknown distortion channels.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"18 1","pages":"1829-1832"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model-based decoding metrics for content identification\",\"authors\":\"R. Naini, P. Moulin\",\"doi\":\"10.1109/ICASSP.2012.6288257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, decoding metrics are designed for statistical fingerprint-based content identification. A fairly general class of structured codes is considered, and a statistical model for the resulting fingerprints and their degraded versions (following miscellaneous content distortions) is proposed and validated. The Maximum-Likelihood fingerprint decoder derived from this model is shown to considerably improve upon previous decoders based on the Hamming metric. A GLRT test is also proposed and evaluated to deal with unknown distortion channels.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"18 1\",\"pages\":\"1829-1832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-based decoding metrics for content identification
In this paper, decoding metrics are designed for statistical fingerprint-based content identification. A fairly general class of structured codes is considered, and a statistical model for the resulting fingerprints and their degraded versions (following miscellaneous content distortions) is proposed and validated. The Maximum-Likelihood fingerprint decoder derived from this model is shown to considerably improve upon previous decoders based on the Hamming metric. A GLRT test is also proposed and evaluated to deal with unknown distortion channels.