用于内容标识的基于模型的解码度量

R. Naini, P. Moulin
{"title":"用于内容标识的基于模型的解码度量","authors":"R. Naini, P. Moulin","doi":"10.1109/ICASSP.2012.6288257","DOIUrl":null,"url":null,"abstract":"In this paper, decoding metrics are designed for statistical fingerprint-based content identification. A fairly general class of structured codes is considered, and a statistical model for the resulting fingerprints and their degraded versions (following miscellaneous content distortions) is proposed and validated. The Maximum-Likelihood fingerprint decoder derived from this model is shown to considerably improve upon previous decoders based on the Hamming metric. A GLRT test is also proposed and evaluated to deal with unknown distortion channels.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"18 1","pages":"1829-1832"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model-based decoding metrics for content identification\",\"authors\":\"R. Naini, P. Moulin\",\"doi\":\"10.1109/ICASSP.2012.6288257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, decoding metrics are designed for statistical fingerprint-based content identification. A fairly general class of structured codes is considered, and a statistical model for the resulting fingerprints and their degraded versions (following miscellaneous content distortions) is proposed and validated. The Maximum-Likelihood fingerprint decoder derived from this model is shown to considerably improve upon previous decoders based on the Hamming metric. A GLRT test is also proposed and evaluated to deal with unknown distortion channels.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"18 1\",\"pages\":\"1829-1832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文设计了基于统计指纹的内容识别解码度量。考虑了相当一般的结构化代码类别,并提出并验证了生成指纹及其降级版本(遵循各种内容扭曲)的统计模型。从该模型导出的最大似然指纹解码器在基于汉明度量的先前解码器的基础上得到了显着改进。提出并评估了一种GLRT测试方法来处理未知失真信道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based decoding metrics for content identification
In this paper, decoding metrics are designed for statistical fingerprint-based content identification. A fairly general class of structured codes is considered, and a statistical model for the resulting fingerprints and their degraded versions (following miscellaneous content distortions) is proposed and validated. The Maximum-Likelihood fingerprint decoder derived from this model is shown to considerably improve upon previous decoders based on the Hamming metric. A GLRT test is also proposed and evaluated to deal with unknown distortion channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信