V. Petrucci, M. Laurenzano, J. Doherty, Yunqi Zhang, D. Mossé, Jason Mars, Lingjia Tang
{"title":"章鱼人:仓库级计算机中异构多核的qos驱动任务管理","authors":"V. Petrucci, M. Laurenzano, J. Doherty, Yunqi Zhang, D. Mossé, Jason Mars, Lingjia Tang","doi":"10.1109/HPCA.2015.7056037","DOIUrl":null,"url":null,"abstract":"Heterogeneous multicore architectures have the potential to improve energy efficiency by integrating power-efficient wimpy cores with high-performing brawny cores. However, it is an open question as how to deliver energy reduction while ensuring the quality of service (QoS) of latency-sensitive web-services running on such heterogeneous multicores in warehouse-scale computers (WSCs). In this work, we first investigate the implications of heterogeneous multicores in WSCs and show that directly adopting heterogeneous multicores without re-designing the software stack to provide QoS management leads to significant QoS violations. We then present Octopus-Man, a novel QoS-aware task management solution that dynamically maps latency-sensitive tasks to the least power-hungry processing resources that are sufficient to meet the QoS requirements. Using carefully-designed feedback-control mechanisms, Octopus-Man addresses critical challenges that emerge due to uncertainties in workload fluctuations and adaptation dynamics in a real system. Our evaluation using web-search and memcached running on a real-system Intel heterogeneous prototype demonstrates that Octopus-Man improves energy efficiency by up to 41% (CPU power) and up to 15% (system power) over an all-brawny WSC design while adhering to specified QoS targets.","PeriodicalId":6593,"journal":{"name":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","volume":"41 1","pages":"246-258"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Octopus-Man: QoS-driven task management for heterogeneous multicores in warehouse-scale computers\",\"authors\":\"V. Petrucci, M. Laurenzano, J. Doherty, Yunqi Zhang, D. Mossé, Jason Mars, Lingjia Tang\",\"doi\":\"10.1109/HPCA.2015.7056037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous multicore architectures have the potential to improve energy efficiency by integrating power-efficient wimpy cores with high-performing brawny cores. However, it is an open question as how to deliver energy reduction while ensuring the quality of service (QoS) of latency-sensitive web-services running on such heterogeneous multicores in warehouse-scale computers (WSCs). In this work, we first investigate the implications of heterogeneous multicores in WSCs and show that directly adopting heterogeneous multicores without re-designing the software stack to provide QoS management leads to significant QoS violations. We then present Octopus-Man, a novel QoS-aware task management solution that dynamically maps latency-sensitive tasks to the least power-hungry processing resources that are sufficient to meet the QoS requirements. Using carefully-designed feedback-control mechanisms, Octopus-Man addresses critical challenges that emerge due to uncertainties in workload fluctuations and adaptation dynamics in a real system. Our evaluation using web-search and memcached running on a real-system Intel heterogeneous prototype demonstrates that Octopus-Man improves energy efficiency by up to 41% (CPU power) and up to 15% (system power) over an all-brawny WSC design while adhering to specified QoS targets.\",\"PeriodicalId\":6593,\"journal\":{\"name\":\"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"41 1\",\"pages\":\"246-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2015.7056037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2015.7056037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Octopus-Man: QoS-driven task management for heterogeneous multicores in warehouse-scale computers
Heterogeneous multicore architectures have the potential to improve energy efficiency by integrating power-efficient wimpy cores with high-performing brawny cores. However, it is an open question as how to deliver energy reduction while ensuring the quality of service (QoS) of latency-sensitive web-services running on such heterogeneous multicores in warehouse-scale computers (WSCs). In this work, we first investigate the implications of heterogeneous multicores in WSCs and show that directly adopting heterogeneous multicores without re-designing the software stack to provide QoS management leads to significant QoS violations. We then present Octopus-Man, a novel QoS-aware task management solution that dynamically maps latency-sensitive tasks to the least power-hungry processing resources that are sufficient to meet the QoS requirements. Using carefully-designed feedback-control mechanisms, Octopus-Man addresses critical challenges that emerge due to uncertainties in workload fluctuations and adaptation dynamics in a real system. Our evaluation using web-search and memcached running on a real-system Intel heterogeneous prototype demonstrates that Octopus-Man improves energy efficiency by up to 41% (CPU power) and up to 15% (system power) over an all-brawny WSC design while adhering to specified QoS targets.