谷物价格的共同因素和动态。预测视角

M. Kwas, Alessia Paccagnini, Micha l Rubaszek
{"title":"谷物价格的共同因素和动态。预测视角","authors":"M. Kwas, Alessia Paccagnini, Micha l Rubaszek","doi":"10.2139/ssrn.3593128","DOIUrl":null,"url":null,"abstract":"This article investigates what determines the price dynamics of the main cereals: barley, maize, rice and wheat. Using an extensive dataset of monthly time series covering the years 1980 - 2019, we extract four different common factors explaining the dynamics of commodity prices, exchange rates, financial and macroeconomic indicators. Next, we examine whether these factors are useful in explaining the movements of cereal prices. We show that models incorporating all four factors outperform significantly the naive random walk model in out-of-sample forecasting competition, especially for longer horizons. However, they have only marginally better performance than a simpler model based on the commodity factor alone.","PeriodicalId":7501,"journal":{"name":"Agricultural & Natural Resource Economics eJournal","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Common Factors and the Dynamics of Cereal Prices. A Forecasting Perspective\",\"authors\":\"M. Kwas, Alessia Paccagnini, Micha l Rubaszek\",\"doi\":\"10.2139/ssrn.3593128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates what determines the price dynamics of the main cereals: barley, maize, rice and wheat. Using an extensive dataset of monthly time series covering the years 1980 - 2019, we extract four different common factors explaining the dynamics of commodity prices, exchange rates, financial and macroeconomic indicators. Next, we examine whether these factors are useful in explaining the movements of cereal prices. We show that models incorporating all four factors outperform significantly the naive random walk model in out-of-sample forecasting competition, especially for longer horizons. However, they have only marginally better performance than a simpler model based on the commodity factor alone.\",\"PeriodicalId\":7501,\"journal\":{\"name\":\"Agricultural & Natural Resource Economics eJournal\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Natural Resource Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3593128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Natural Resource Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3593128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了决定大麦、玉米、水稻和小麦等主要谷物价格动态的因素。使用涵盖1980 - 2019年的每月时间序列的广泛数据集,我们提取了四个不同的共同因素,解释了商品价格、汇率、金融和宏观经济指标的动态。接下来,我们将检验这些因素是否有助于解释谷物价格的变动。我们表明,包含所有四个因素的模型在样本外预测竞争中表现明显优于朴素随机漫步模型,特别是对于更长的视野。然而,它们的表现只比仅基于商品因素的简单模型好一点点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common Factors and the Dynamics of Cereal Prices. A Forecasting Perspective
This article investigates what determines the price dynamics of the main cereals: barley, maize, rice and wheat. Using an extensive dataset of monthly time series covering the years 1980 - 2019, we extract four different common factors explaining the dynamics of commodity prices, exchange rates, financial and macroeconomic indicators. Next, we examine whether these factors are useful in explaining the movements of cereal prices. We show that models incorporating all four factors outperform significantly the naive random walk model in out-of-sample forecasting competition, especially for longer horizons. However, they have only marginally better performance than a simpler model based on the commodity factor alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信