非均质介质中Kramers-Kronig关系及电导率和介电常数的性质

C. Bédard, A. Destexhe
{"title":"非均质介质中Kramers-Kronig关系及电导率和介电常数的性质","authors":"C. Bédard, A. Destexhe","doi":"10.4236/jemaa.2018.102003","DOIUrl":null,"url":null,"abstract":"The macroscopic electric permittivity of a given medium may depend on frequency, but this frequency dependence cannot be arbitrary, its real and imaginary parts are related by the well-known Kramers-Kronig relations. Here, we show that an analogous paradigm applies to the macroscopic electric conductivity. If the causality principle is taken into account, there exists Kramers-Kronig relations for conductivity, which are mathematically equivalent to the Hilbert transform. These relations impose strong constraints that models of heterogeneous media should satisfy to have a physically plausible frequency dependence of the conductivity and permittivity. We illustrate these relations and constraints by a few examples of known physical media. These extended relations constitute important constraints to test the consistency of past and future experimental measurements of the electric properties of heterogeneous media.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"75 1","pages":"34-51"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Kramers-Kronig relations and the properties of conductivity and permittivity in heterogeneous media\",\"authors\":\"C. Bédard, A. Destexhe\",\"doi\":\"10.4236/jemaa.2018.102003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The macroscopic electric permittivity of a given medium may depend on frequency, but this frequency dependence cannot be arbitrary, its real and imaginary parts are related by the well-known Kramers-Kronig relations. Here, we show that an analogous paradigm applies to the macroscopic electric conductivity. If the causality principle is taken into account, there exists Kramers-Kronig relations for conductivity, which are mathematically equivalent to the Hilbert transform. These relations impose strong constraints that models of heterogeneous media should satisfy to have a physically plausible frequency dependence of the conductivity and permittivity. We illustrate these relations and constraints by a few examples of known physical media. These extended relations constitute important constraints to test the consistency of past and future experimental measurements of the electric properties of heterogeneous media.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"75 1\",\"pages\":\"34-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jemaa.2018.102003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jemaa.2018.102003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

给定介质的宏观介电常数可能依赖于频率,但这种频率依赖关系不能是任意的,它的实部和虚部是由著名的Kramers-Kronig关系联系起来的。在这里,我们证明了一个类似的范例适用于宏观电导率。如果考虑因果关系原理,电导率存在Kramers-Kronig关系,它在数学上等同于希尔伯特变换。这些关系施加了很强的约束,异质介质模型必须满足物理上合理的电导率和介电常数的频率依赖性。我们通过几个已知物理介质的例子来说明这些关系和约束。这些扩展关系构成了重要的约束,以测试过去和未来的实验测量的一致性异质介质的电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kramers-Kronig relations and the properties of conductivity and permittivity in heterogeneous media
The macroscopic electric permittivity of a given medium may depend on frequency, but this frequency dependence cannot be arbitrary, its real and imaginary parts are related by the well-known Kramers-Kronig relations. Here, we show that an analogous paradigm applies to the macroscopic electric conductivity. If the causality principle is taken into account, there exists Kramers-Kronig relations for conductivity, which are mathematically equivalent to the Hilbert transform. These relations impose strong constraints that models of heterogeneous media should satisfy to have a physically plausible frequency dependence of the conductivity and permittivity. We illustrate these relations and constraints by a few examples of known physical media. These extended relations constitute important constraints to test the consistency of past and future experimental measurements of the electric properties of heterogeneous media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信