关于双复高斯斐波那契数和高斯卢卡斯数

IF 0.3 Q4 MATHEMATICS
E. Özkan, B. Kuloğlu
{"title":"关于双复高斯斐波那契数和高斯卢卡斯数","authors":"E. Özkan, B. Kuloğlu","doi":"10.12697/acutm.2022.26.03","DOIUrl":null,"url":null,"abstract":"We give the bicomplex Gaussian Fibonacci and the bicomplex Gaussian Lucas numbers and establish the generating functions and Binet’s formulas related to these numbers. Also, we present the summation formula, matrix representation and Honsberger identity and their relationship between these numbers. Finally, we show the relationships among the bicomplex Gaussian Fibonacci, the bicomplex Gaussian Lucas, Gaussian Fibonacci, Gaussian Lucas and Fibonacci numbers.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"47 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the bicomplex Gaussian Fibonacci and Gaussian Lucas numbers\",\"authors\":\"E. Özkan, B. Kuloğlu\",\"doi\":\"10.12697/acutm.2022.26.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give the bicomplex Gaussian Fibonacci and the bicomplex Gaussian Lucas numbers and establish the generating functions and Binet’s formulas related to these numbers. Also, we present the summation formula, matrix representation and Honsberger identity and their relationship between these numbers. Finally, we show the relationships among the bicomplex Gaussian Fibonacci, the bicomplex Gaussian Lucas, Gaussian Fibonacci, Gaussian Lucas and Fibonacci numbers.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2022.26.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了双复高斯Fibonacci数和双复高斯Lucas数,并建立了与这些数相关的生成函数和Binet公式。并给出了求和公式、矩阵表示和Honsberger恒等式以及它们之间的关系。最后,我们展示了双复高斯斐波那契数、双复高斯卢卡斯数、高斯斐波那契数、高斯卢卡斯数和斐波那契数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the bicomplex Gaussian Fibonacci and Gaussian Lucas numbers
We give the bicomplex Gaussian Fibonacci and the bicomplex Gaussian Lucas numbers and establish the generating functions and Binet’s formulas related to these numbers. Also, we present the summation formula, matrix representation and Honsberger identity and their relationship between these numbers. Finally, we show the relationships among the bicomplex Gaussian Fibonacci, the bicomplex Gaussian Lucas, Gaussian Fibonacci, Gaussian Lucas and Fibonacci numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信