统一推复基础:来自人类研究的启示

C. McGreavy, Kai Yuan, Daniel F. N. Gordon, Kang Tan, W. Wolfslag, S. Vijayakumar, Zhibin Li
{"title":"统一推复基础:来自人类研究的启示","authors":"C. McGreavy, Kai Yuan, Daniel F. N. Gordon, Kang Tan, W. Wolfslag, S. Vijayakumar, Zhibin Li","doi":"10.1109/ICRA40945.2020.9196911","DOIUrl":null,"url":null,"abstract":"Currently for balance recovery, humans outperform humanoid robots which use hand-designed controllers in terms of the diverse actions. This study aims to close this gap by finding core control principles that are shared across ankle, hip, toe and stepping strategies by formulating experiments to test human balance recoveries and define criteria to quantify the strategy in use. To reveal fundamental principles of balance strategies, our study shows that a minimum jerk controller can accurately replicate comparable human behaviour at the Centre of Mass level. Therefore, we formulate a general Model-Predictive Control (MPC) framework to produce recovery motions in any system, including legged machines, where the framework parameters are tuned for time-optimal performance in robotic systems.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"20 1","pages":"10876-10882"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Unified Push Recovery Fundamentals: Inspiration from Human Study\",\"authors\":\"C. McGreavy, Kai Yuan, Daniel F. N. Gordon, Kang Tan, W. Wolfslag, S. Vijayakumar, Zhibin Li\",\"doi\":\"10.1109/ICRA40945.2020.9196911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently for balance recovery, humans outperform humanoid robots which use hand-designed controllers in terms of the diverse actions. This study aims to close this gap by finding core control principles that are shared across ankle, hip, toe and stepping strategies by formulating experiments to test human balance recoveries and define criteria to quantify the strategy in use. To reveal fundamental principles of balance strategies, our study shows that a minimum jerk controller can accurately replicate comparable human behaviour at the Centre of Mass level. Therefore, we formulate a general Model-Predictive Control (MPC) framework to produce recovery motions in any system, including legged machines, where the framework parameters are tuned for time-optimal performance in robotic systems.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"20 1\",\"pages\":\"10876-10882\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

目前在平衡恢复方面,人类在各种动作方面都优于使用手动设计控制器的类人机器人。本研究旨在通过制定实验来测试人体平衡恢复和定义标准来量化所使用的策略,从而找到踝关节、髋关节、脚趾和踏步策略共享的核心控制原则,从而缩小这一差距。为了揭示平衡策略的基本原理,我们的研究表明,最小抖动控制器可以准确地在质心水平上复制可比的人类行为。因此,我们制定了一个通用的模型预测控制(MPC)框架,以在任何系统中产生恢复运动,包括腿式机器,其中框架参数在机器人系统中被调整为时间最优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified Push Recovery Fundamentals: Inspiration from Human Study
Currently for balance recovery, humans outperform humanoid robots which use hand-designed controllers in terms of the diverse actions. This study aims to close this gap by finding core control principles that are shared across ankle, hip, toe and stepping strategies by formulating experiments to test human balance recoveries and define criteria to quantify the strategy in use. To reveal fundamental principles of balance strategies, our study shows that a minimum jerk controller can accurately replicate comparable human behaviour at the Centre of Mass level. Therefore, we formulate a general Model-Predictive Control (MPC) framework to produce recovery motions in any system, including legged machines, where the framework parameters are tuned for time-optimal performance in robotic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信