具有多选择随机参数的随机运输问题

IF 0.9 Q3 MATHEMATICS, APPLIED
Talari Ganesh, K. K. Paidipati, Christophe Chesneau
{"title":"具有多选择随机参数的随机运输问题","authors":"Talari Ganesh,&nbsp;K. K. Paidipati,&nbsp;Christophe Chesneau","doi":"10.1155/2023/9109009","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper deals with the situation of multiple random choices along with multiple objective functions of the transportation problem. Due to the uncertainty in the environment, the choices of the cost coefficients are considered multichoice random parameters. The other parameters (supply and demand) are replaced by random variables with Gaussian distributions, and each multichoice parameter alternative is treated as a random variable. In this paper, the Newton divided difference interpolation technique is used to convert the multichoice parameter into a single choice in the objective function. Then, the chance-constrained method is applied to transform the probabilistic constraints into deterministic constraints. Due to the consideration of multichoices in the objective function, the expectation minimization model is used to get the deterministic form. Moreover, the fuzzy programming approach with the membership function is utilized to convert the multiobjective function into a single-objective function. A case study is also illustrated for a better understanding of the methodology.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9109009","citationCount":"0","resultStr":"{\"title\":\"Stochastic Transportation Problem with Multichoice Random Parameter\",\"authors\":\"Talari Ganesh,&nbsp;K. K. Paidipati,&nbsp;Christophe Chesneau\",\"doi\":\"10.1155/2023/9109009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This paper deals with the situation of multiple random choices along with multiple objective functions of the transportation problem. Due to the uncertainty in the environment, the choices of the cost coefficients are considered multichoice random parameters. The other parameters (supply and demand) are replaced by random variables with Gaussian distributions, and each multichoice parameter alternative is treated as a random variable. In this paper, the Newton divided difference interpolation technique is used to convert the multichoice parameter into a single choice in the objective function. Then, the chance-constrained method is applied to transform the probabilistic constraints into deterministic constraints. Due to the consideration of multichoices in the objective function, the expectation minimization model is used to get the deterministic form. Moreover, the fuzzy programming approach with the membership function is utilized to convert the multiobjective function into a single-objective function. A case study is also illustrated for a better understanding of the methodology.</p>\\n </div>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9109009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2023/9109009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/9109009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了运输问题的多随机选择和多目标函数情况。由于环境的不确定性,成本系数的选择被认为是多选择随机参数。其他参数(供给和需求)被高斯分布的随机变量取代,并且每个多选择参数替代都被视为随机变量。本文采用牛顿差分插值技术,将目标函数中的多选择参数转化为单选择参数。然后,利用机会约束方法将概率约束转化为确定性约束。由于目标函数中考虑了多选项,采用期望最小化模型得到确定性形式。利用隶属函数模糊规划方法将多目标函数转化为单目标函数。为了更好地理解该方法,还说明了一个案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Transportation Problem with Multichoice Random Parameter

This paper deals with the situation of multiple random choices along with multiple objective functions of the transportation problem. Due to the uncertainty in the environment, the choices of the cost coefficients are considered multichoice random parameters. The other parameters (supply and demand) are replaced by random variables with Gaussian distributions, and each multichoice parameter alternative is treated as a random variable. In this paper, the Newton divided difference interpolation technique is used to convert the multichoice parameter into a single choice in the objective function. Then, the chance-constrained method is applied to transform the probabilistic constraints into deterministic constraints. Due to the consideration of multichoices in the objective function, the expectation minimization model is used to get the deterministic form. Moreover, the fuzzy programming approach with the membership function is utilized to convert the multiobjective function into a single-objective function. A case study is also illustrated for a better understanding of the methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信