{"title":"数值相关性的归一化和公理化","authors":"John Grant, Jack Minker","doi":"10.1016/S0019-9958(85)80017-6","DOIUrl":null,"url":null,"abstract":"<div><p>We show how to use both horizontal and vertical decomposition to normalize a database schema which contains numerical dependencies. We present a finite set of inference rules for numerical dependencies which is a generalization of the Armstrong axioms. We prove that this set is sound and complete for some special cases.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1985-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80017-6","citationCount":"22","resultStr":"{\"title\":\"Normalization and axiomatization for numerical dependencies\",\"authors\":\"John Grant, Jack Minker\",\"doi\":\"10.1016/S0019-9958(85)80017-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show how to use both horizontal and vertical decomposition to normalize a database schema which contains numerical dependencies. We present a finite set of inference rules for numerical dependencies which is a generalization of the Armstrong axioms. We prove that this set is sound and complete for some special cases.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80017-6\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995885800176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995885800176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Normalization and axiomatization for numerical dependencies
We show how to use both horizontal and vertical decomposition to normalize a database schema which contains numerical dependencies. We present a finite set of inference rules for numerical dependencies which is a generalization of the Armstrong axioms. We prove that this set is sound and complete for some special cases.