{"title":"iStage:基于深度学习的框架,用于从社交媒体消息确定灾害管理周期的阶段","authors":"A. Singla, R. Agrawal","doi":"10.1108/gkmc-10-2022-0239","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to propose iStage, i.e. an intelligent hybrid deep learning (DL)-based framework to determine the stage of the disaster to make the right decisions at the right time.\n\n\nDesign/methodology/approach\niStage acquires data from the Twitter platform and identifies the social media message as pre, during, post-disaster or irrelevant. To demonstrate the effectiveness of iStage, it is applied on cyclonic and COVID-19 disasters. The considered disaster data sets are cyclone Fani, cyclone Titli, cyclone Amphan, cyclone Nisarga and COVID-19.\n\n\nFindings\nThe experimental results demonstrate that the iStage outperforms Long Short-Term Memory Network and Convolutional Neural Network models. The proposed approach returns the best possible solution among existing research studies considering different evaluation metrics – accuracy, precision, recall, f-score, the area under receiver operating characteristic curve and the area under precision-recall curve.\n\n\nOriginality/value\niStage is built using the hybrid architecture of DL models. It is effective in decision-making. The research study helps coordinate disaster activities in a more targeted and timely manner.\n","PeriodicalId":43718,"journal":{"name":"Global Knowledge Memory and Communication","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"iStage: a deep learning based framework to determine the stage of disaster management cycle from a social media message\",\"authors\":\"A. Singla, R. Agrawal\",\"doi\":\"10.1108/gkmc-10-2022-0239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to propose iStage, i.e. an intelligent hybrid deep learning (DL)-based framework to determine the stage of the disaster to make the right decisions at the right time.\\n\\n\\nDesign/methodology/approach\\niStage acquires data from the Twitter platform and identifies the social media message as pre, during, post-disaster or irrelevant. To demonstrate the effectiveness of iStage, it is applied on cyclonic and COVID-19 disasters. The considered disaster data sets are cyclone Fani, cyclone Titli, cyclone Amphan, cyclone Nisarga and COVID-19.\\n\\n\\nFindings\\nThe experimental results demonstrate that the iStage outperforms Long Short-Term Memory Network and Convolutional Neural Network models. The proposed approach returns the best possible solution among existing research studies considering different evaluation metrics – accuracy, precision, recall, f-score, the area under receiver operating characteristic curve and the area under precision-recall curve.\\n\\n\\nOriginality/value\\niStage is built using the hybrid architecture of DL models. It is effective in decision-making. The research study helps coordinate disaster activities in a more targeted and timely manner.\\n\",\"PeriodicalId\":43718,\"journal\":{\"name\":\"Global Knowledge Memory and Communication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Knowledge Memory and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/gkmc-10-2022-0239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Knowledge Memory and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/gkmc-10-2022-0239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
iStage: a deep learning based framework to determine the stage of disaster management cycle from a social media message
Purpose
This study aims to propose iStage, i.e. an intelligent hybrid deep learning (DL)-based framework to determine the stage of the disaster to make the right decisions at the right time.
Design/methodology/approach
iStage acquires data from the Twitter platform and identifies the social media message as pre, during, post-disaster or irrelevant. To demonstrate the effectiveness of iStage, it is applied on cyclonic and COVID-19 disasters. The considered disaster data sets are cyclone Fani, cyclone Titli, cyclone Amphan, cyclone Nisarga and COVID-19.
Findings
The experimental results demonstrate that the iStage outperforms Long Short-Term Memory Network and Convolutional Neural Network models. The proposed approach returns the best possible solution among existing research studies considering different evaluation metrics – accuracy, precision, recall, f-score, the area under receiver operating characteristic curve and the area under precision-recall curve.
Originality/value
iStage is built using the hybrid architecture of DL models. It is effective in decision-making. The research study helps coordinate disaster activities in a more targeted and timely manner.