并网多能微电网短期负荷预测的集成学习方法

Mao Tan, Ji-Cheng Jin, Yongxin Su
{"title":"并网多能微电网短期负荷预测的集成学习方法","authors":"Mao Tan, Ji-Cheng Jin, Yongxin Su","doi":"10.1109/SSCI44817.2019.9002812","DOIUrl":null,"url":null,"abstract":"In grid-connected multi-energy microgrid, fluctuation of renewable energy generation and coupling of multiple energy resources make the power load difficult to forecast accurately. In this paper, we focus on the short-term gateway load forecasting of grid-connected multi-energy microgrid. Consider spatial correlation between microgrid nodes, the information of multiple nodes, e.g., renewable energy access node, gas turbine access node and some critical load nodes, is utilized to implement information fusion forecasting. We propose an ensemble model that integrates GBRT, XGboost, Decison Tree and Seq2Seq to solve the problem. An IEEE33 bus system based simulation is conducted on an integrated platform with OpenDSS and Simulink. The experimental results show that the proposed approach outperforms several classical time series models with higher accuracy and better stability.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"497-502"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Ensemble Learning Approach for Short-Term Load Forecasting of Grid-Connected Multi-energy Microgrid\",\"authors\":\"Mao Tan, Ji-Cheng Jin, Yongxin Su\",\"doi\":\"10.1109/SSCI44817.2019.9002812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In grid-connected multi-energy microgrid, fluctuation of renewable energy generation and coupling of multiple energy resources make the power load difficult to forecast accurately. In this paper, we focus on the short-term gateway load forecasting of grid-connected multi-energy microgrid. Consider spatial correlation between microgrid nodes, the information of multiple nodes, e.g., renewable energy access node, gas turbine access node and some critical load nodes, is utilized to implement information fusion forecasting. We propose an ensemble model that integrates GBRT, XGboost, Decison Tree and Seq2Seq to solve the problem. An IEEE33 bus system based simulation is conducted on an integrated platform with OpenDSS and Simulink. The experimental results show that the proposed approach outperforms several classical time series models with higher accuracy and better stability.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"1 1\",\"pages\":\"497-502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在并网多能微电网中,可再生能源发电的波动和多种能源的耦合使得电力负荷难以准确预测。本文主要研究并网多能微网网关负荷的短期预测问题。考虑微网节点间的空间相关性,利用可再生能源接入节点、燃气轮机接入节点和部分关键负荷节点等多个节点的信息进行信息融合预测。我们提出了一个集成了GBRT、XGboost、decision Tree和Seq2Seq的集成模型来解决这个问题。在基于OpenDSS和Simulink的集成平台上进行了基于IEEE33总线系统的仿真。实验结果表明,该方法优于几种经典时间序列模型,具有更高的精度和更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble Learning Approach for Short-Term Load Forecasting of Grid-Connected Multi-energy Microgrid
In grid-connected multi-energy microgrid, fluctuation of renewable energy generation and coupling of multiple energy resources make the power load difficult to forecast accurately. In this paper, we focus on the short-term gateway load forecasting of grid-connected multi-energy microgrid. Consider spatial correlation between microgrid nodes, the information of multiple nodes, e.g., renewable energy access node, gas turbine access node and some critical load nodes, is utilized to implement information fusion forecasting. We propose an ensemble model that integrates GBRT, XGboost, Decison Tree and Seq2Seq to solve the problem. An IEEE33 bus system based simulation is conducted on an integrated platform with OpenDSS and Simulink. The experimental results show that the proposed approach outperforms several classical time series models with higher accuracy and better stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信