利用静息状态功能网络连接区分精神分裂症和正常对照:一种深度神经网络和分层相关传播方法

Weizheng Yan, S. Plis, V. Calhoun, Shengfeng Liu, R. Jiang, T. Jiang, J. Sui
{"title":"利用静息状态功能网络连接区分精神分裂症和正常对照:一种深度神经网络和分层相关传播方法","authors":"Weizheng Yan, S. Plis, V. Calhoun, Shengfeng Liu, R. Jiang, T. Jiang, J. Sui","doi":"10.1109/MLSP.2017.8168179","DOIUrl":null,"url":null,"abstract":"Deep learning has gained considerable attention in the scientific community, breaking benchmark records in many fields such as speech and visual recognition [1]. Motivated by extending advancement of deep learning approaches to brain imaging classification, we propose a framework, called “deep neural network (DNN)+ layer-wise relevance propagation (LRP)”, to distinguish schizophrenia patients (SZ) from healthy controls (HCs) using functional network connectivity (FNC). 1100 Chinese subjects of 7 sites are included, each with a 50∗50 FNC matrix resulted from group ICA on resting-state fMRI data. The proposed DNN+LRP not only improves classification accuracy significantly compare to four state-of-the-art classification methods (84% vs. less than 79%, 10 folds cross validation) but also enables identification of the most contributing FNC patterns related to SZ classification, which cannot be easily traced back by general DNN models. By conducting LRP, we identified the FNC patterns that exhibit the highest discriminative power in SZ classification. More importantly, when using leave-one-site-out cross validation (using 6 sites for training, 1 site for testing, 7 times in total), the cross-site classification accuracy reached 82%, suggesting high robustness and generalization performance of the proposed method, promising a wide utility in the community and great potentials for biomarker identification of brain disorders.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Discriminating schizophrenia from normal controls using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method\",\"authors\":\"Weizheng Yan, S. Plis, V. Calhoun, Shengfeng Liu, R. Jiang, T. Jiang, J. Sui\",\"doi\":\"10.1109/MLSP.2017.8168179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has gained considerable attention in the scientific community, breaking benchmark records in many fields such as speech and visual recognition [1]. Motivated by extending advancement of deep learning approaches to brain imaging classification, we propose a framework, called “deep neural network (DNN)+ layer-wise relevance propagation (LRP)”, to distinguish schizophrenia patients (SZ) from healthy controls (HCs) using functional network connectivity (FNC). 1100 Chinese subjects of 7 sites are included, each with a 50∗50 FNC matrix resulted from group ICA on resting-state fMRI data. The proposed DNN+LRP not only improves classification accuracy significantly compare to four state-of-the-art classification methods (84% vs. less than 79%, 10 folds cross validation) but also enables identification of the most contributing FNC patterns related to SZ classification, which cannot be easily traced back by general DNN models. By conducting LRP, we identified the FNC patterns that exhibit the highest discriminative power in SZ classification. More importantly, when using leave-one-site-out cross validation (using 6 sites for training, 1 site for testing, 7 times in total), the cross-site classification accuracy reached 82%, suggesting high robustness and generalization performance of the proposed method, promising a wide utility in the community and great potentials for biomarker identification of brain disorders.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"14 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

深度学习在科学界引起了相当大的关注,在语音和视觉识别等许多领域都打破了基准记录[1]。基于深度学习方法在脑成像分类中的扩展进展,我们提出了一个名为“深度神经网络(DNN)+分层相关传播(LRP)”的框架,利用功能网络连接(FNC)来区分精神分裂症患者(SZ)和健康对照(hc)。共纳入7个站点的1100名中国受试者,每个受试者的静息态fMRI数据的分组ICA结果为50 * 50 FNC矩阵。与四种最先进的分类方法(84% vs.低于79%,10倍交叉验证)相比,所提出的DNN+LRP不仅显著提高了分类精度,而且能够识别与SZ分类相关的最重要的FNC模式,这些模式无法通过一般DNN模型轻松追溯。通过LRP,我们发现了在SZ分类中表现出最高判别能力的FNC模式。更重要的是,当使用留一站点交叉验证(6个站点进行训练,1个站点进行测试,共7次)时,跨站点分类准确率达到82%,表明所提出的方法具有较高的鲁棒性和泛化性能,在社会上具有广泛的实用性,在脑部疾病的生物标志物鉴定方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminating schizophrenia from normal controls using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method
Deep learning has gained considerable attention in the scientific community, breaking benchmark records in many fields such as speech and visual recognition [1]. Motivated by extending advancement of deep learning approaches to brain imaging classification, we propose a framework, called “deep neural network (DNN)+ layer-wise relevance propagation (LRP)”, to distinguish schizophrenia patients (SZ) from healthy controls (HCs) using functional network connectivity (FNC). 1100 Chinese subjects of 7 sites are included, each with a 50∗50 FNC matrix resulted from group ICA on resting-state fMRI data. The proposed DNN+LRP not only improves classification accuracy significantly compare to four state-of-the-art classification methods (84% vs. less than 79%, 10 folds cross validation) but also enables identification of the most contributing FNC patterns related to SZ classification, which cannot be easily traced back by general DNN models. By conducting LRP, we identified the FNC patterns that exhibit the highest discriminative power in SZ classification. More importantly, when using leave-one-site-out cross validation (using 6 sites for training, 1 site for testing, 7 times in total), the cross-site classification accuracy reached 82%, suggesting high robustness and generalization performance of the proposed method, promising a wide utility in the community and great potentials for biomarker identification of brain disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信