V. Ordodi, I. Borlea, D. A. Vereș, C. Stănese, B. F. Mercè
{"title":"光伏电池与热电发电机耦合的性能研究","authors":"V. Ordodi, I. Borlea, D. A. Vereș, C. Stănese, B. F. Mercè","doi":"10.2478/awutp-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract Identifying possibilities to increase the performance of photovoltaic cells is a priority for the energy field. This article presents preliminary results obtained in natural environment conditions with an experimental device that allows the cooling of photovoltaic cells and additionally the partial transformation of the heat transferred to the cold source (natural flowing water) by coupling with a thermoelectric generator based on the Seebeck effect. The structure of the experimental device is a sandwich type with the following main elements: the polycrystalline silicon photovoltaic cell, the Bi-Te thermoelectric generator and an aluminum radiator in contact with the cold water of the river. In this way, an increase in the electrical output power of approximately 28% is obtained, compared to the same photovoltaic cell alone.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Performance of a Photovoltaic Cell Coupled with a Thermoelectric Generator\",\"authors\":\"V. Ordodi, I. Borlea, D. A. Vereș, C. Stănese, B. F. Mercè\",\"doi\":\"10.2478/awutp-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Identifying possibilities to increase the performance of photovoltaic cells is a priority for the energy field. This article presents preliminary results obtained in natural environment conditions with an experimental device that allows the cooling of photovoltaic cells and additionally the partial transformation of the heat transferred to the cold source (natural flowing water) by coupling with a thermoelectric generator based on the Seebeck effect. The structure of the experimental device is a sandwich type with the following main elements: the polycrystalline silicon photovoltaic cell, the Bi-Te thermoelectric generator and an aluminum radiator in contact with the cold water of the river. In this way, an increase in the electrical output power of approximately 28% is obtained, compared to the same photovoltaic cell alone.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Performance of a Photovoltaic Cell Coupled with a Thermoelectric Generator
Abstract Identifying possibilities to increase the performance of photovoltaic cells is a priority for the energy field. This article presents preliminary results obtained in natural environment conditions with an experimental device that allows the cooling of photovoltaic cells and additionally the partial transformation of the heat transferred to the cold source (natural flowing water) by coupling with a thermoelectric generator based on the Seebeck effect. The structure of the experimental device is a sandwich type with the following main elements: the polycrystalline silicon photovoltaic cell, the Bi-Te thermoelectric generator and an aluminum radiator in contact with the cold water of the river. In this way, an increase in the electrical output power of approximately 28% is obtained, compared to the same photovoltaic cell alone.