A. Balliu, Janne H. Korhonen, F. Kuhn, Henrik Lievonen, D. Olivetti, Shreyas Pai, A. Paz, J. Rybicki, Stefan Schmid, Jan Studen'y, J. Suomela, Jara Uitto
{"title":"无下沉定向变得简单","authors":"A. Balliu, Janne H. Korhonen, F. Kuhn, Henrik Lievonen, D. Olivetti, Shreyas Pai, A. Paz, J. Rybicki, Stefan Schmid, Jan Studen'y, J. Suomela, Jara Uitto","doi":"10.1137/1.9781611977585.ch17","DOIUrl":null,"url":null,"abstract":"The sinkless orientation problem plays a key role in understanding the foundations of distributed computing. The problem can be used to separate two fundamental models of distributed graph algorithms, LOCAL and SLOCAL: the locality of sinkless orientation is $\\Omega(\\log n)$ in the deterministic LOCAL model and $O(\\log \\log n)$ in the deterministic SLOCAL model. Both of these results are known by prior work, but here we give new simple, self-contained proofs for them.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"36 1","pages":"175-191"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sinkless Orientation Made Simple\",\"authors\":\"A. Balliu, Janne H. Korhonen, F. Kuhn, Henrik Lievonen, D. Olivetti, Shreyas Pai, A. Paz, J. Rybicki, Stefan Schmid, Jan Studen'y, J. Suomela, Jara Uitto\",\"doi\":\"10.1137/1.9781611977585.ch17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sinkless orientation problem plays a key role in understanding the foundations of distributed computing. The problem can be used to separate two fundamental models of distributed graph algorithms, LOCAL and SLOCAL: the locality of sinkless orientation is $\\\\Omega(\\\\log n)$ in the deterministic LOCAL model and $O(\\\\log \\\\log n)$ in the deterministic SLOCAL model. Both of these results are known by prior work, but here we give new simple, self-contained proofs for them.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"36 1\",\"pages\":\"175-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977585.ch17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977585.ch17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The sinkless orientation problem plays a key role in understanding the foundations of distributed computing. The problem can be used to separate two fundamental models of distributed graph algorithms, LOCAL and SLOCAL: the locality of sinkless orientation is $\Omega(\log n)$ in the deterministic LOCAL model and $O(\log \log n)$ in the deterministic SLOCAL model. Both of these results are known by prior work, but here we give new simple, self-contained proofs for them.