{"title":"用于非易失性存储器的Ag/In2O3/Pt异质结构的电阻开关","authors":"B. V. Mistry, U. Joshi, R. Pinto","doi":"10.1063/1.4710218","DOIUrl":null,"url":null,"abstract":"Resistance switching properties of nanostructured In2O3 films grown on Pt bottom electrode have been investigated for non volatile memory applications. Ag/In2O3/Pt/Ti/SiO2/Si heterostructures were fabricated by pulsed laser deposition and e-beam evaporation techniques. Polycrystalline growth of oxides In2O3 was confirmed by grazing incidence X-ray diffraction, where as AFM show nanostructured growth with smooth surface morphology. Two terminal I-V characteristics showed reproducible hysteresis with a sharp resistive switching, suggesting two distinct resistance states in the film and bipolar type switching. Typical resistance switching ratio (Ron/Roff) of the order of 72% has been estimated at room temperature. The mechanism of the observed resistance switching is analyzed by space charge limited current (SCLS) and the Schottky-like barrier formation at Ag/In2O3 interface in the off states, where as, Pool-Frankel type conduction mechanism seems valid in the on state.","PeriodicalId":16850,"journal":{"name":"Journal of Physics C: Solid State Physics","volume":"50 1","pages":"745-746"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resistive switching of Ag/In2O3/Pt heterostructures for non volatile memory applications\",\"authors\":\"B. V. Mistry, U. Joshi, R. Pinto\",\"doi\":\"10.1063/1.4710218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistance switching properties of nanostructured In2O3 films grown on Pt bottom electrode have been investigated for non volatile memory applications. Ag/In2O3/Pt/Ti/SiO2/Si heterostructures were fabricated by pulsed laser deposition and e-beam evaporation techniques. Polycrystalline growth of oxides In2O3 was confirmed by grazing incidence X-ray diffraction, where as AFM show nanostructured growth with smooth surface morphology. Two terminal I-V characteristics showed reproducible hysteresis with a sharp resistive switching, suggesting two distinct resistance states in the film and bipolar type switching. Typical resistance switching ratio (Ron/Roff) of the order of 72% has been estimated at room temperature. The mechanism of the observed resistance switching is analyzed by space charge limited current (SCLS) and the Schottky-like barrier formation at Ag/In2O3 interface in the off states, where as, Pool-Frankel type conduction mechanism seems valid in the on state.\",\"PeriodicalId\":16850,\"journal\":{\"name\":\"Journal of Physics C: Solid State Physics\",\"volume\":\"50 1\",\"pages\":\"745-746\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics C: Solid State Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.4710218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics C: Solid State Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4710218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resistive switching of Ag/In2O3/Pt heterostructures for non volatile memory applications
Resistance switching properties of nanostructured In2O3 films grown on Pt bottom electrode have been investigated for non volatile memory applications. Ag/In2O3/Pt/Ti/SiO2/Si heterostructures were fabricated by pulsed laser deposition and e-beam evaporation techniques. Polycrystalline growth of oxides In2O3 was confirmed by grazing incidence X-ray diffraction, where as AFM show nanostructured growth with smooth surface morphology. Two terminal I-V characteristics showed reproducible hysteresis with a sharp resistive switching, suggesting two distinct resistance states in the film and bipolar type switching. Typical resistance switching ratio (Ron/Roff) of the order of 72% has been estimated at room temperature. The mechanism of the observed resistance switching is analyzed by space charge limited current (SCLS) and the Schottky-like barrier formation at Ag/In2O3 interface in the off states, where as, Pool-Frankel type conduction mechanism seems valid in the on state.