多精度下最坏情况峰值增益矩阵的可靠评估

Anastasia Volkova, Thibault Hilaire, C. Lauter
{"title":"多精度下最坏情况峰值增益矩阵的可靠评估","authors":"Anastasia Volkova, Thibault Hilaire, C. Lauter","doi":"10.1109/ARITH.2015.14","DOIUrl":null,"url":null,"abstract":"The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"1 1","pages":"96-103"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision\",\"authors\":\"Anastasia Volkova, Thibault Hilaire, C. Lauter\",\"doi\":\"10.1109/ARITH.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"1 1\",\"pages\":\"96-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

线性滤波器的最坏峰值增益(WCPG)是衡量信号处理算法实现的重要指标。它用于滤波器的误差传播分析,因此需要一个精度可控的可靠评估。WCPG被计算为一个无限和,并且在每个和中都有矩阵幂。我们给出了与期望截断误差相关的无穷和截断阶下界的一个直接公式。提出了几种复杂矩阵运算的多精度方法,并对其误差进行了分析。提出了一种多精度矩阵供电方法。所有方法都得到一个严格的解,其绝对误差由一个先验给定的值限定。通过数值算例说明了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision
The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信